TLRs have been studied extensively in the context of pathogen challenges, yet their role in the unchallenged lung is unknown. Given their direct interface with the external environment, TLRs in the lungs are prime candidates to respond to air constituents, namely particulates and oxygen. The mechanism whereby the lung maintains structural integrity in the face of constant ambient exposures is essential to our understanding of lung disease. Emphysema is characterized by gradual loss of lung elasticity and irreversible airspace enlargement, usually in the later decades of life and after years of insult, most commonly cigarette smoke. Here we show Tlr4 -/-mice exhibited emphysema as they aged. Adoptive transfer experiments revealed that TLR4 expression in lung structural cells was required for maintaining normal lung architecture. TLR4 deficiency led to the upregulation of what we believe to be a novel NADPH oxidase (Nox), Nox3, in lungs and endothelial cells, resulting in increased oxidant generation and elastolytic activity. Treatment of Tlr4 -/-mice or endothelial cells with chemical NADPH inhibitors or Nox3 siRNA reversed the observed phenotype. Our data identify a role for TLR4 in maintaining constitutive lung integrity by modulating oxidant generation and provide insights into the development of emphysema. IntroductionTLRs have been intensely studied in the context of microbial challenges, inflammation, and immune cells, but their critical role in non-infectious challenges has newly emerged. We have recently shown that mammalian TLR4 is required for survival during lethal oxidant stress resulting from hyperoxia (1, 2) or bleomycin-induced injury (3). However, even in the absence of injury, the lungs are required to process and adapt to the constant exposure to the inhaled environment. The lungs are exposed continuously to oxidants generated either endogenously from phagocytes and other cell types or exogenously from inhaled oxygen as well as pollutants. In addition, intracellular oxidants, such as those derived from the NADPH oxidase (Nox) system, are involved in many cellular signaling pathways. Under normal circumstances lungs can withstand the oxidant challenges imposed by the ambient environment via the presence of well-developed enzymatic and nonenzymatic antioxidant systems (4). However, when the balance shifts in favor of oxidants, from either an excess of oxidants and/or depletion of its antioxidant responses, oxidative stress occurs. We postulated that TLR4 mediates important antioxidant responses in the lung and that TLR4 deficiency would therefore lead to altered responses to oxidants in the ambient environment. We performed histopathologic and morphometric analyses of lungs isolated from WT and Tlr4 -/-mice from 1 month to 12 months of age. To our surprise, the lungs of Tlr4 -/-mice exhibited age-related changes that resembled pulmonary emphysema in humans both histologically and functionally.
Carbon monoxide (CO), a reaction product of the cytoprotective gene heme oxygenase, has been shown to be protective against organ injury in a variety of models. One potential mechanism whereby CO affords cytoprotection is through its anti-apoptotic properties. Our studies show that low level, exogenous CO attenuates anoxiareoxygenation (A-R)-induced lung endothelial cell apoptosis. Exposure of primary rat pulmonary artery endothelial cells to minimal levels of CO inhibits apoptosis and enhances phospho-p38 mitogen-activated protein kinase (MAPK) activation in A-R. Transfection of p38␣ dominant negative mutant or inhibition of p38 MAPK activity with SB203580 ablates the anti-apoptotic effects of CO in A-R. CO, through p38 MAPK, indirectly modulates caspase 3. Furthermore, we correlate our in vitro apoptosis model with an in vivo model of A-R by showing that CO can attenuate I-R injury of the lung. Taken together, our data are the first to demonstrate in models of A-R that the anti-apoptotic effects of CO are via modulation of p38 MAPK and caspase 3.
Heme oxygenase-1 (HO-1) is emerging as an important cytoprotective enzyme system in a variety of injury models. To optimize future therapeutic applications of HO-1, it is necessary to delineate the precise functions and mechanisms as well as modes of externally regulating HO-1 expression. Investigations have been limited by difficulties with the generation of HO-1 null mice and the lack of specific HO-1 inhibitors. Lung ischemiareperfusion (I-R) injury is the inciting event in acute lung failure following transplantation, surgery, and shock. To study the function of HO-1 in I-R-induced lung injury, we designed small interfering RNA (siRNA) sequences that effectively suppress HO-1 expression both in vitro and in vivo in an organ-specific manner. In this study we show that there is enhanced apoptosis, via increased Fas expression and caspase 3 activity, in the presence of HO-1 siRNA in endothelial cells and mouse lung during I-R injury, whereas HO-1 overexpression attenuates apoptosis. To the best of our knowledge, we are the first to demonstrate that lung-specific siRNA delivery can be achieved by intranasal administration without the need for viral vectors or transfection agents in vivo, thereby obviating potential concerns for toxicity if siRNA technology is to have clinical application in the future.
Carbon monoxide is protective in ischemia-reperfusion organ injury, but the precise mechanisms remain elusive. We have recently shown that low levels of exogenous carbon monoxide (CO) utilize p38 MAPK and attenuate caspase 3 activity to exert an antiapoptotic effect during lung ischemia-reperfusion injury. Our current data demonstrate that CO activates the p38␣ MAPK isoform and the upstream MAPK kinase MKK3 to modulate Fas/Fas ligand expression; caspases 3, 8, and 9; mitochondrial cytochrome c release; Bcl-2 proteins; and poly(ADP-ribose) polymerase cleavage. We correlate our in vitro findings with in vivo studies using MKK3-deficient and Fas-deficient mice. Taken together, our data are the first to demonstrate that CO has an antiapoptotic effect by inhibiting Fas/Fas ligand, caspases, proapoptotic Bcl-2 proteins, and cytochrome c release via the MKK3/p38␣ MAPK pathway.
Therapy with high oxygen concentrations (hyperoxia) is often necessary to treat patients with respiratory failure. However, hyperoxia may exacerbate the development of acute lung injury, perhaps by increasing lung epithelial cell death. Therefore, interrupting lung epithelial cell death is an important protective and therapeutic strategy. In the present study, hyperoxia (95% O(2)) results in murine lung epithelium cell death by DNA-laddering, terminal deoxynucleotidyltransferase dUTP nick end labeling, and Annexin V-fluorescein isothiocyanate flow cytometry assay. We show that hyperoxia increases superoxide production, as assessed by nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase activity and flow cytometric assay, and increases phospho-extracellular signal-regulated kinase (ERK)1/2 by Western blot analysis. These processes are inhibited by a reactive oxygen species inhibitor, diphenylene iodonium (DPI), and by an inhibitor of the mitogen-activated protein (MAP) or ERK kinase (MEK)/ERK1/2 pathway, PD98059. ERK1/2 activation in hyperoxia is also inhibited by DPI. Hyperoxia-induced cell death is associated with cytochrome c release, subsequent caspase 9 and 3 activation, and poly (ADP-ribosyl) polymerase cleavage, which can all be suppressed by DPI and PD98059. However, the broad caspase inhibitor z-VAD-FMK protects cells from death without affecting superoxide generation and ERK1/2 activation. Taken together, our data suggest that hyperoxia, by virtue of activating NADPH oxidase, generates reactive oxygen species (ROS), which mediates cell death of lung epithelium via ERK1/2 MAPK activation, and functions upstream of caspase activation in lung epithelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.