Hantaan virus (HTNV) causes hemorrhagic fever with renal syndrome (HFRS). Previous studies have identified interferon-induced transmembrane proteins (IFITMs) as an interferon-stimulated gene family. However, the role of IFITMs in HTNV infection is unclear. In this study, we observed that IFITM3 single nucleotide polymorphisms (SNP) rs12252 C allele and CC genotype associated with the disease severity and HTNV load in the plasma of HFRS patients. In vitro experiments showed that the truncated protein produced by the rs12252 C allele exhibited an impaired anti-HTNV activity. We also proved that IFITM3 was able to inhibit HTNV infection in both HUVEC and A549 cells by overexpression and RNAi assays, likely via a mechanism of inhibiting virus entry demonstrated by binding and entry assay. Localization of IFITM3 in late endosomes was also observed. In addition, we demonstrated that the transcription of IFITM3 is negatively regulated by an lncRNA negative regulator of interferon response (NRIR). Taken together, we conclude that IFITM3, negatively regulated by NRIR, inhibits HTNV infection, and its SNP rs12252 correlates with the plasma HTNV load and the disease severity of patients with HFRS.
Japanese encephalitis virus (JEV) is the most prevalent cause of viral encephalitis in Asia and the western Pacific. Neuronal death caused by JEV infection and inflammation induced cytotoxicity leads to progression and deterioration of Japanese encephalitis (JE). Mixed-lineage kinase domain-like protein (MLKL) mediated necroptosis is a newly discovered pathway of programmed cell death and participates in many inflammatory diseases. In this study, we demonstrated for the first time that necroptosis was involved in the neuronal loss during JE via immune-electron microscopy and immunochemistry. The expression of MLKL in neurons was upregulated in presence of JEV infection in vitro and in vivo. Deletion of MLKL alleviated the progression of JE and decreased the level of inflammatory cytokines in mice model. Taken together, this study provides evidence for the participation of necroptosis in the pathogenesis of JEV infection.
BackgroundJapanese encephalitis virus (JEV) is the leading cause of viral encephalitis in Asia. Japanese encephalitis (JE) caused by JEV is characterized by extensive inflammatory cytokine secretion, microglia activation, blood-brain barrier (BBB) breakdown, and neuronal death, all of which contribute to the vicious cycle of inflammatory damage. There are currently no effective treatments for JE. Mesenchymal stem cells (MSCs) have been demonstrated to have a therapeutic effect on many central nervous system (CNS) diseases by regulating inflammation and other mechanisms.MethodsIn vivo, 8- to 10-week-old mice were infected intraperitoneally with JEV and syngeneic bone marrow MSCs were administered through the caudal vein at 1 and 3 days post-infection. The mortality, body weight, and behavior were monitored daily. Brains from each group were harvested at the indicated times for hematoxylin and eosin staining, immunohistochemical observation, flow cytometric analysis, TUNEL staining, Western blot, quantitative real-time polymerase chain reaction, and BBB permeability assays. In vitro, co-culture and mixed culture experiments of MSCs with either microglia or neurons were performed, and then the activation state of microglia and survival rate of neurons were tested 48 h post-infection.ResultsMSC treatment reduced JEV-induced mortality and improved the recovery from JE in our mouse model. The inflammatory response, microglia activation, neuronal damage, BBB destruction, and viral load (VL) were significantly decreased in the MSC-treated group. In co-culture experiments, MSCs reprogrammed M1-to-M2 switching in microglia and improved neuron survival. Additionally, the VL was decreased in Neuro2a cells in the presence of MSCs accompanied by increased expression of interferon-α/β.ConclusionMSC treatment alleviated JEV-induced inflammation and mortality in mice.Electronic supplementary materialThe online version of this article (doi:10.1186/s13287-017-0486-5) contains supplementary material, which is available to authorized users.
Japanese encephalitis virus (JEV), the leading cause of viral encephalitis in Asia, is neurovirulent and neuroinvasive. Neurons are the main target of JEV infection and propagation. Receptor interacting serine/threonine-protein kinase 3 (RIPK3) has been reported to contribute to neuroinflammation and neuronal death in many central nervous system diseases. In this study, we found that the progression of JE was alleviated in RIPK3-knockout (RIPK3 −/− ) mice in both peripheral and intracerebral infection. RIPK3knockdown (RIPK3-RNAi) neuro2a cells showed higher cell viability during JEV infection. Moreover, the JEV load was significantly decreased in RIPK3 −/− mouse-derived primary neurons and RIPK3-RNAi neuro2a cells compared with wild-type neurons, but this was not observed in microglia. Furthermore, RNA sequencing of brain tissues showed that the level of the interferon (IFN)-induced protein 44-like gene (IFI44L) was significantly increased in JEV-infected RIPK3 −/− mouse brains, RIPK3 −/− neurons, and RIPK3-RNAi-neuro2a cells. Then, it was demonstrated that the propagation of JEV was inhibited in IFI44L-overexpressing neuro2a cells and enhanced in IFI44L and RIPK3 double knockdown neuro2a cells. Taken together, our results showed that the increased expression of RIPK3 following JEV infection played complicated roles. On the one hand, RIPK3 participated in neuroinflammation and neuronal death during JEV infection. On the other hand, RIPK3 inhibited the expression of IFI44L to some extent, leading to the propagation of JEV in neurons, which might be a strategy for JEV to evade the cellular innate immune response. Keywords: Japanese encephalitis virus (JEV), receptor interacting serine/threonine-protein kinase 3 (RIPK3), interferon-induced protein 44-like gene (IFI44L), neurons, cellular innate immune response Frontiers in Microbiology | www.frontiersin.org March 2020 | Volume 11 | Article 368 Frontiers in Microbiology | www.frontiersin.org
Background: Hepatitis C virus (HCV) dysregulates innate and adaptive immune responses while monocytes (M) play a crucial role in linking innate and adaptive immunity to control viral infection. A transcription factor T-bet is upregulated to dampen M functions via the c-Jun N-terminal kinase (JNK) pathway, followed by enhanced Tim-3 expression in chronic HCV infection. However, the molecular mechanisms that control the expression in M are yet unknown. miR-155 has been implicated as a key regulator controlling diverse biological processes through posttranscriptional repression, but the influences of miR-155 on these regulators and effectors still need to be studied. Methods: Forty HCV-infected patients and 40 healthy subjects (HS) were recruited, THP-1 cells (human acute monocyte leukemia cell line) were cultured with HCV-infected Huh 7.5 cells. The expression levels of miR-155 and JNK1/JNK2/JNK3 were measured by real-time RT-PCR. IL-10/IL-12 was detected by flow cytometry. THP-1 cells were transfected with mimics-155 and negative control, SOCS1, p-STAT1, p65, p-smad, p-p38, and p-JNK were measured by Western blot. TNF-α levels were measured by ELISA. Student's t-test was used in statistics. Results: The study showed that miR-155 was upregulated in CD14 + M in HCV-infected patients compared to healthy subjects (P<0.05). Moreover, the upregulation of miR-155 in CD14 + M from HCV-infected patients induced TNF-α production and JNK gene expression, which, in turn, led to T-bet upregulation. Also, miR-155 upregulation in CD14 + M of HCV-infected patients increased the IL-12 and decreased the IL-10 production. Conclusions: The obtained results indicated that miR-155 upregulation in M during HCV infection enhances the activation of TNF-α and JNK pathways, promotes the expression of transcription factor T-bet, and triggers pro-and anti-inflammatory mediators. Together, these data reveal new information regarding the mechanisms of chronic HCV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.