Most power transformer faults are caused by iron core and winding faults. At present, the method that is most widely used for transformer iron core and winding faults identification is the vibration analysis method. The vibration analysis method generally determines the degree of fault by analyzing the energy spectrum of the transformer vibration signal. However, the noise reduction step in this method is complicated and costly, and the effect of denoising needs to be further improved to make the fault identification results more accurate. In addition, it is difficult to perform an accurate determination of the early mild failure of the transformer due to the effect of noise on the results. This paper presents a novel mathematical statistics method based on the vibration signal to optimize the vibration analysis method for the short-circuit failure of the transformer winding. The proposed method was used for linear analysis of the transformer vibration signal with different degrees of short-circuit failure of the transformer winding. By comparing the slope value of the transformer vibration signal cumulative probability distribution curve and analyzing the energy spectrum of the signal, the degree of short-circuit failure of the transformer winding was identified quickly and accurately. This method also simplified the signal denoising process in transformer fault detection, improved the accuracy of fault detection, reduced the time of fault detection, and provided good predictability for early mild faults of the transformer, thereby reducing the hidden hazards of operating the power transformer. The proposed optimization procedure offers a new research idea in transformer fault identification.
The winding current harmonic content of converter transformer in operation is rich. However, affected by harmonics, the radial vibration characteristics are quite different from the power transformer, structural loosening and deformation caused by winding vibration are more prominent. Therefore, in view of the influence of current harmonics on axial and radial vibrations, this study builds a 3D winding electromagnetic vibration finite element simulation model, analyses the components and contents of current harmonics, compares the leakage flux and vibration distribution under the fundamental, harmonic and superimposed currents. The correlation relationship between the harmonic components and axial and radial vibration characteristics is obtained, and the vibration measurement test of ±800 kV converter transformer in operation is carried out to verify the correctness of the analysis method. The results show that the winding radial vibration amplitude will exceed the axial vibration affected by harmonics. More importantly, under the superposition of the fundamental, 5th and 7th harmonic current, the vibration contribution of the converter transformer tank is mainly radial vibration, and the vibration dominant frequency is shifted from 100 Hz under the fundamental current to 400 Hz.
The converter transformer is a special power transformer that connects the converter bridge to the AC system in the HVDC transmission system. Due to the special structure of the converter transformer, it is necessary to test its operation state during its manufacture and processing to ensure the safety of its future connection to the grid. Numerous studies have shown that vibration signals in transformers can reflect their operating state. Therefore, in order to achieve an effective identification of the operation state of the converter transformer, this paper proposes a method for identifying the operation state of the converter transformer based on vibration detection technology and a deep belief network optimization algorithm. This paper firstly describes the background, principle and application of vibration detection technology, using vibration measurement systems with piezoelectric acceleration sensors, piezoelectric actuators and data acquisition instruments to collect vibration signals at different measurement points on the converter transformer in states of no-load and on-load. By analyzing the time-frequency characteristics of the vibration signals, fast Fourier transform (FFT), wavelet packet decomposition (WPD) and time domain indexes (TDI) are combined into a fused feature extraction method to extract the eigenvalues of the vibration signals, so that the fused eigenvectors of the signals can be constructed. Considering the excellent performance of deep learning in classification, the deep belief network is used to classify the signals’ eigenvectors. To effectively improve the network classification efficiency, the sparrow search algorithm was introduced to build a mathematical model based on the behavioral characteristics of sparrow populations and combine the model with a deep belief network, so as to achieve adaptive parameter optimization of the network and accurate classification of the signals’ eigenvectors. The proposed method is applied to a 500 kV converter transformer for experimental verification. The experimental results show that the fused feature extraction method was able to fully extract the features of the vibration signal, and the deep belief network optimization algorithm had higher classification accuracy and better operational efficiency, and was able to effectively achieve accurate identification of the operation state of the converter transformer. In addition, the method achieved a precision response to the detection results of the vibration sensors, contributing to future improvements in converter transformer manufacturing technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.