Carbon dots (C-dots) with sulfur-doped (S-doped) was synthesized using a simple and straightforward hydrothermal method. The as-prepared S-doped C-dots exhibit significant high fluorescence quantum yield (67%) and unique emission property. The form spherical shaped S-doped C-dots have average diameter 4.6 nm and the fluorescence of S-doped C-dots can be effectively and selectively quenched by 10
MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs that regulate gene expression after transcription. Aberrant expression of miRNAs has been shown to be involved in tumorigenesis. We showed that miR-21 was one of the most frequently overexpressed miRNA in human glioblastoma (GBM) cell lines. To explore whether miR-21 can serve as a therapeutic target for glioblastoma, we downregulated miR-21 with a specific antisense oligonucleotide and found that apoptosis was induced and cell-cycle progression was inhibited in vitro in U251 (PTEN mutant) and LN229 (PTEN wildtype) GBM cells; xenograft tumors from antisense-treated U251 cells were suppressed in vivo. Antisense-miR-21-treated cells showed a decreased expression of EGFR, activated Akt, cyclin D, and Bcl-2. Although miR-21 is known to regulate PTEN and downregulation of miR-21 led to increased PTEN expression both endogenously and in a reporter gene assay, the GBM suppressor effect of antisense-miR-21 is most likely independent of PTEN regulation because U251 has mutant PTEN. Microarray analysis showed that the knockdown of miR-21 significantly altered expression of 169 genes involved in nine cell-cycle and signaling pathways. Taken together, our studies provide evidence that miR-21 may serve as a novel therapeutic target for malignant gliomas independent of PTEN status. Malignant gliomas are the most common primary brain tumors with high mortality and morbidity. The prognosis for malignant gliomas has not significantly improved in the last four decades. A recent meta-analysis of 12 randomized clinical trials showed that the overall survival rate of highgrade gliomas was 40% at 1 year after surgical removal and only slightly higher, 46%, after combined radiotherapy and chemotherapy. 1 To develop more optimized and effective treatment strategies for malignant gliomas, it is critical to gain deeper understanding of the molecular mechanisms underlying gliomagenesis and to identify targets for therapeutic intervention.The microRNAs (miRNAs) are a class of highly conserved small non-coding RNAs, approximately 22 nucleotides in length, that control gene expression through binding to the seed sequence at the 3 0 -UTR (untranslated region) of target mRNAs, resulting in translational repression or mRNA degradation. 2 This regulatory mechanism was first shown in the developmental processes in worms, flies, and plants. [3][4][5] Subsequently, miRNAs have been shown to have important roles in many physiological processes of mammalian systems by influencing cell apoptosis, proliferation, differentiation, development, and metabolism through regulation of critical signaling molecules including cytokines, growth factors, transcription factors, and pro-apoptotic and anti-apoptotic proteins. [6][7][8] Increasing number of miRNAs have been identified in the human genome and they are collectively called the miRNome. 9 Accumulating evidence shows the potential
BackgroundMicroRNAs (miRNAs) can function as either oncogenes or tumor suppressor genes via regulation of cell proliferation and/or apoptosis. MiR-221 and miR-222 were discovered to induce cell growth and cell cycle progression via direct targeting of p27 and p57 in various human malignancies. However, the roles of miR-221 and miR-222 have not been reported in human gastric cancer. In this study, we examined the impact of miR-221 and miR-222 on human gastric cancer cells, and identified target genes for miR-221 and miR-222 that might mediate their biology.MethodsThe human gastric cancer cell line SGC7901 was transfected with AS-miR-221/222 or transduced with pMSCV-miR-221/222 to knockdown or restore expression of miR-221 and miR-222, respectively. The effects of miR-221 and miR-222 were then assessed by cell viability, cell cycle analysis, apoptosis, transwell, and clonogenic assay. Potential target genes were identified by Western blot and luciferase reporter assay.ResultsUpregulation of miR-221 and miR-222 induced the malignant phenotype of SGC7901 cells, whereas knockdown of miR-221 and miR-222 reversed this phenotype via induction of PTEN expression. In addition, knockdonwn of miR-221 and miR-222 inhibited cell growth and invasion and increased the radiosensitivity of SGC7901 cells. Notably, the seed sequence of miR-221 and miR-222 matched the 3'UTR of PTEN, and introducing a PTEN cDNA without the 3'UTR into SGC7901 cells abrogated the miR-221 and miR-222-induced malignant phenotype. PTEN-3'UTR luciferase reporter assay confirmed PTEN as a direct target of miR-221 and miR-222.ConclusionThese results demonstrate that miR-221 and miR-222 regulate radiosensitivity, and cell growth and invasion of SGC7901 cells, possibly via direct modulation of PTEN expression. Our study suggests that inhibition of miR-221 and miR-222 might form a novel therapeutic strategy for human gastric cancer.
BackgroundMiR-221 and miR-222 (miR-221/222) are frequently up-regulated in various types of human malignancy including glioblastoma. Recent studies have reported that miR-221/222 regulate cell growth and cell cycle progression by targeting p27 and p57. However the underlying mechanism involved in cell survival modulation of miR-221/222 remains elusive.ResultsHere we showed that miR-221/222 inhibited cell apoptosis by targeting pro-apoptotic gene PUMA in human glioma cells. Enforced expression of miR-22/222 induced cell survival whereas knockdown of miR-221/222 rendered cells to apoptosis. Further, miR-221/222 reduced PUMA protein levels by targeting PUMA-3'UTR. Introducing PUMA cDNA without 3'UTR abrogated miR-221/222-induced cell survival. Notably, knockdown of miR-221/222 induces PUMA expression and cell apoptosis and considerably decreases tumor growth in xenograft model. Finally, there was an inverse relationship between PUMA and miR-221/222 expression in glioma tissues.ConclusionTo our knowledge, these data indicate for the first time that miR-221/222 directly regulate apoptosis by targeting PUMA in glioblastoma and that miR-221/222 could be potential therapeutic targets for glioblastoma intervention.
Our data establish that HOTAIR is an important long noncoding RNA that primarily serves as a prognostic factor for glioma patient survival, as well as a biomarker for identifying glioma molecular subtypes, a critical regulator of cell cycle progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.