In order to improve the accuracy of emotional recognition by end-to-end automatic learning of emotional features in spatial and temporal dimensions of electroencephalogram (EEG), an EEG emotional feature learning and classification method using deep convolution neural network (CNN) was proposed based on temporal features, frequential features, and their combinations of EEG signals in DEAP dataset. The shallow machine learning models including bagging tree (BT), support vector machine (SVM), linear discriminant analysis (LDA), and Bayesian linear discriminant analysis (BLDA) models and deep CNN models were used to make emotional binary classification experiments on DEAP datasets in valence and arousal dimensions. The experimental results showed that the deep CNN models which require no feature engineering achieved the best recognition performance on temporal and frequency combined features in both valence and arousal dimensions, which is 3.58% higher than the performance of the best traditional BT classifier in valence dimension and 3.29% higher than that of BT classifier in arousal dimension.INDEX TERMS EEG, emotion recognition, convolution neural network, combined features, deep learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.