IEC 61850 is one of the most prominent communication standards adopted by the smart grid community due to its high scalability, multi-vendor interoperability, and support for several input/output devices. Generic Object-Oriented Substation Events (GOOSE), which is a widely used communication protocol defined in IEC 61850, provides reliable and fast transmission of events for the electrical substation system. This paper investigates the security vulnerabilities of this protocol and analyzes the potential impact on the smart grid by rigorously analyzing the security of the GOOSE protocol using an automated process and identifying vulnerabilities in the context of smart grid communication. The vulnerabilities are tested using a real-time simulation and industry standard hardware-in-the-loop emulation. An in-depth experimental analysis is performed to demonstrate and verify the security weakness of the GOOSE publish-subscribe protocol towards the substation protection within the smart grid setup. It is observed that an adversary who might have familiarity with the substation network architecture can create falsified attack scenarios that can affect the physical operation of the power system. Extensive experiments using the real-time testbed validate the theoretical analysis, and the obtained experimental results prove that the GOOSE-based IEC 61850 compliant substation system is vulnerable to attacks from malicious intruders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.