Severe acute respiratory syndrome (SARS) is an infectious condition caused by the SARS-associated coronavirus (SARS-CoV), a new member in the family Coronaviridae. To evaluate the lung pathology in this life-threatening respiratory illness, we studied postmortem lung sections from 8 patients who died from SARS during the spring 2003 Singapore outbreak. The predominant pattern of lung injury in all 8 cases was diffuse alveolar damage. The histology varied according to the duration of illness. Cases of 10 or fewer days' duration demonstrated acute-phase diffuse alveolar damage (DAD), airspace edema, and bronchiolar fibrin. Cases of more than 10 days' duration exhibited organizing-phase DAD, type II pneumocyte hyperplasia, squamous metaplasia, multinucleated giant cells, and acute bronchopneumonia. In acute-phase DAD, pancytokeratin staining was positive in hyaline membranes along alveolar walls and highlighted the absence of pneumocytes. Multinucleated cells were shown to be both type II pneumocytes and macrophages by pancytokeratin, thyroid transcription factor-1, and CD68 staining. SARS-CoV RNA was identified by reverse transcriptase-polymerase chain reaction in 7 of 8 cases in fresh autopsy tissue and in 8 of 8 cases in formalin-fixed, paraffin-embedded lung tissue, including the 1 negative case in fresh tissue. Understanding the pathology of DAD in SARS patients may provide the basis for therapeutic strategies. Further studies of the pathogenesis of SARS may reveal new insight into the mechanisms of DAD.
With the use of the breast cancer metastatic model, which comprises four isogenic cell lines, iTRAQ-based ESI-LC/MS/MS proteomics was employed to catalog protein expression changes as cancer cells acquire increasing metastatic potential. From more than 1000 proteins detected, 197 proteins, including drug-targetable kinases, phosphatases, proteases and transcription factors, displayed differential expression when cancer cells becomes more metastatic. Overall, the number of protein expression changes was evenly distributed across mildly ( approximately 30%), moderately ( approximately 40%) and aggressively ( approximately 30%) metastatic cancer cells. Some changes were found to be specific to one while others were required for two or more phenotypes. KEGG Orthology suggests major reprogramming in cell metabolism and to smaller extents in genetic and environmental information processing. Ten novel metastasis-associated proteins were identified and the iTRAQ-based expression profiles of 7 proteins were verified to be congruent with antibody-based methods. With the use of tissue microarrays comprising 50 matched cases of invasive and metastatic lesions, the expression profiles of SH3GLB1 and SUB1, SND1, TRIM28 were validated to be down- and up-regulated, respectively, during clinical progression of carcinoma in situ to invasive and metastatic carcinomas. Our study has unraveled proteome-wide molecular aberrations and potentially new players in breast cancer metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.