S U M M A R Y Group II phospholipase A2 (PLA2) is an acute-phase protein and an important component of the host defense against bacteria. In this study we investigated the distribution of PLA2 protein by immunohistochemistry and the distribution of mRNA of PLA2 by Northern blotting and in situ hybridization in rat tissues. PLA2 protein was localized in the Paneth cells of the intestinal mucosa, chondrocytes and the matrix of cartilage, and megakaryocytes in the spleen. By Northern blotting, mRNA of PLA2 was found in the gastrointestinal tract, lung, heart, and spleen. By in situ hybridization, PLA2 mRNA was localized in the Paneth cells of the small intestinal mucosa but in no other cell types. Our results show specific distribution of PLA2 in a limited number of cell types in rat tissues. The reagents developed in this study (the anti-rat PLA2 antibody and probes for Northern blotting and in situ hybridization of mRNA of rat PLA2) will provide useful tools for future studies concerning the role of PLA2 in various experimental disease models.
We present a novel method of statistical analysis for the comparison of electrophoretic data. The method is based on the squared Euclidian distance of normalized signal data vectors of electrophoretic lanes. The differences in the electrophoretic patterns are evaluated by a statistical test based on Hubert's statistics which measures the significance of the signal grouping. We demonstrate the validity and applicability of the method in a large data set derived from automated fluorescent mRNA differential display analysis of the expression of acute-phase proteins during experimental Escherichia coli infection in mice. The current testing method is capable of finding theoretically similar natural groupings to be similar in a statistically significant way whereas theoretically dissimilar or random groupings can be recognized to be artifactual. We also show how the calculated pairwise signal distances can be utilized in methodological problem solving. These analytical methods can be applied to the study of other related problems of similarity analysis of electrophoretic patterns, and also provide useful tools for the development of automated recognition of differentially expressed mRNAs.
We present a modification of mRNA differential display in which increased throughput results from the use of an automated fluorescent sequencer. The sequence analysis is performed directly on purified fragments without further cloning. The amplified fragments carry a T7 RNA polymerase promoter sequence tag for in vitro transcription of riboprobes for nonradioactive in situ hybridization. We compared changes in gene expression in the liver and colon of group II phospholipase A2 transgenic and group II phospholipase A2 deficient mice during the course of experimental Escherichia coli infection. Fluorescent mRNA differential display comprising a 7 x 24 set of primers was used to study a total of 31,257 amplified cDNA fragments. Sequence analysis of the displayed fragments associated with infection identified classical acute-phase proteins in the liver and host defense proteins in the colon. The displayed mRNAs associated to transgenicity were the transgene itself, i.e., human group II phospholipase A2, and glutathione-S-transferase in the liver. In the colon, the displayed mRNAs associated with transgenicity were the pancreatitis-associated protein and mucin. The results show that fluorescent mRNA differential display is a reliable method to identify differences in the expression of the genes of acute-phase proteins.
We analyzed changes in gene expression in human colonic carcinoma by fluorescent mRNA differential display. RNA isolated from two samples of normal colon and four cases of colonic adenocarcinoma were amplified with a 15 x 32 set of primers resulting in 2880 cDNAs analyzed with an automated sequencer. Electrophoretic patterns implying constitutive gene expression as well as upregulated and downregulated expression in carcinomas were identified. Forty such cDNA fragments were purified by a novel fluorescent polyacrylamide gel electrophoresis (PAGE)-based method and identified by cyclic sequencing. Most genes showing differential expression were upregulated in colonic carcinoma. Upregulated genes included those for various ribosomal and mitochondrial proteins, heat shock proteins, nucleolar RNA-helicase and phosphoserine aminotransferase. Downregulated genes included histone H3.3. In conclusion, genes associated with vital cellular functions such as transcription, protein synthesis and mitochondrial metabolism were upregulated in colonic carcinoma. Fluorescent mRNA differential display can be applied to the identification of novel cancer-related genes for diagnostic, prognostic and therapeutic purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.