The Galapagos Sailfin grouper, Mycteroperca olfax, locally known as bacalao and listed as vulnerable by the IUCN, is culturally, economically, and ecologically important to the Galapagos archipelago and its people. It is regionally endemic to the Eastern Tropical Pacific, and, while an important fishery resource that has shown substantial declines in recent years, to date no effective management regulations are in place to ensure the sustainability of the Galapagos fishery for this species. Previous estimates of longevity and size at maturity for bacalao are inconsistent with estimates for congeners, which brings into question the accuracy of prior estimates. We set out to assess the age, growth, and reproductive biology of bacalao in order to provide more accurate life history information to inform more effective fisheries management for this species. The oldest fish in our sample was 21 years old, which is 2–3 times greater than previously reported estimates of longevity. Parameter estimates for the von Bertalanffy growth function (k = 0.11, L∞ = 110 cm TL, and to = − 1.7 years) show bacalao to grow much slower and attain substantially larger asymptotic maximum length than previous studies. Mean size at maturity (as female) was estimated at 65.3 cm TL, corresponding to a mean age of 6.5 years. We found that sex ratios were extremely female biased (0.009 M:1F), with a large majority of the individuals in our experimental catch being immature (79%). Our results show that bacalao grow slower, live longer, and mature at a much larger size and greater age than previously thought, with very few mature males in the population. These findings have important implications for the fishery of this valuable species and provide the impetus for a long-overdue species management plan to ensure its long-term sustainability.
Overfishing has dramatically depleted sharks and other large predatory fishes worldwide except for a few remote and/or well-protected areas. The islands of Darwin and Wolf in the far north of the Galapagos Marine Reserve (GMR) are known for their large shark abundance, making them a global scuba diving and conservation hotspot. Here we report quantitative estimates of fish abundance at Darwin and Wolf over two consecutive years using stereo-video surveys, which reveal the largest reef fish biomass ever reported (17.5 t on average), consisting largely of sharks. Despite this, the abundance of reef fishes around the GMR, such as groupers, has been severely reduced because of unsustainable fishing practices. Although Darwin and Wolf are within the GMR, they were not fully protected from fishing until March 2016. Given the ecological value and the economic importance of Darwin and Wolf for the dive tourism industry, the current protection should ensure the long-term conservation of this hotspot of unique global value.
Overfishing has dramatically depleted sharks and other large predatory fishes worldwide except for a few remote and/or well-protected areas. The islands of Darwin and Wolf in the far north of the Galapagos Marine Reserve (GMR) are known for their large shark abundance, making them a global scuba diving and conservation hotspot. Here we report quantitative estimates of fish abundance at Darwin and Wolf over two consecutive years using stereo-video surveys, which reveal the largest reef fish biomass ever reported (17.5 t ha-1 on average), consisting largely of sharks. Despite this, the abundance of reef fishes around the GMR, such as groupers, has been severely reduced because of unsustainable fishing practices. Although Darwin and Wolf are within the GMR, they were not fully protected from fishing until March 2016. Given the ecological value and the economic importance of Darwin and Wolf for the dive tourism industry, the current protection should ensure the long-term conservation of this hotspot of unique global value.
The white-spotted sandbass (Paralabrax albomaculatus) is a commercially important species in the Galapagos Marine Reserve, but is classified as endangered in the IUCN Red List. For this study, 10 microsatellite loci were isolated and characterized using Illumina paired-end sequencing. These loci can be used for genetic studies of population structure and connectivity to aid in the management of the white-spotted sandbass and other closely-related species. The 10 characterized loci were polymorphic, with 11–49 alleles per locus, and observed heterozygosity ranged from 0.575 to 0.964. This set of markers is the first to be developed for this species.
<p>There is ongoing debate about the levels of connectivity among marine populations and despite its importance, there is limited information on the levels of population connectivity in most geographic locations. This lack of information severely limits our ability to adequately manage the marine environment including the design and implementation of Marine Reserve (MRs) networks. The specific objectives of this thesis were to: 1) Develop polymorphic microsatellite loci for my model species, the intertidal gastropod Austrolittorina cincta; 2) Conduct population genetic studies across A.cincta populations within the Cook strait region to asses the levels of connectivity within the regional marine reserve network; 3) Determine the levels of A. cincta larval movement and settlement from an isolated source; and 4) Asses the effect of the larval abundance on settlement rates. This thesis includes laboratory studies; population genetic studies; and field surveys within New Zealand and in the Wakatobi National Park, Indonesia. Eight novel polymorphic microsatellite loci were developed for A. cincta and five of these loci were used to investigate population connectivity across seven populations within the Cook Strait region, including four marine reserves. In the population genetics study, in contrast to what was expected, I recorded low, but significant genetic differentiation between most population pairs within the Cook Strait region, over a minimum and maximum spatial scale of 55 to 300 km, including several of the MRs. In a large-scale field settlement survey on the Kapiti coast combined with the use of microsatellite markers I investigated A. cincta larval movement and settlement and found that most larvae settle within 5 km, although some larvae might travel up to 50 km. Finally, the coral settlement studies in the Wakatobi National Park revealed lower coral settlement rates at sites with low adult coral cover, suggesting an effect of the the amount of local available larvae on coral settlement rates. While it has been suggested that marine populations are demographically open, with larvae connecting populations separated over large spatial scales, this thesis shows that populations might not be as open as previously considered and localized dispersal and self-recruitment processes might be a frequent feature in marine populations. This thesis provides valuable information to managers about marine reserve networks and the importance of adequate environmental protection to ensure future viable populations.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.