BackgroundBiallelic variants in PNPT1 cause a mitochondrial disease of variable severity. PNPT1 (polynucleotide phosphorylase) is a mitochondrial protein involved in RNA processing where it has a dual role in the import of small RNAs into mitochondria and in preventing the formation and release of mitochondrial double-stranded RNA into the cytoplasm. This, in turn, prevents the activation of type I interferon response. Detailed neuroimaging findings in PNPT1-related disease are lacking with only a few patients reported with basal ganglia lesions (Leigh syndrome) or non-specific signs.Objective and methodsTo document neuroimaging data in six patients with PNPT1 highlighting novel findings.ResultsTwo patients exhibited striatal lesions compatible with Leigh syndrome; one patient exhibited leukoencephalopathy and one patient had a normal brain MRI. Interestingly, two unrelated patients exhibited cystic leukoencephalopathy resembling RNASET2-deficient patients, patients with Aicardi-Goutières syndrome (AGS) or congenital CMV infection.ConclusionWe suggest that similar to RNASET2, PNPT1 be searched for in the setting of cystic leukoencephalopathy. These findings are in line with activation of type I interferon response observed in AGS, PNPT1 and RNASET2 deficiencies, suggesting a common pathophysiological pathway and linking mitochondrial diseases, interferonopathies and immune dysregulations.
Background Vitamin B12 deficiency frequently appears in phenylketonuria patients having a diet poor in natural protein. The aims of this study were to evaluate vitamin B12 status in phenylketonuria patients by using combined indicator of vitamin B12 status (cB12) as well as methylmalonic acid and homocysteine, more specific and sensitive markers, in comparison with healthy controls. Methods Fifty-three children and adolescents with phenylketonuria under dietary treatment and 30 healthy controls were assessed cross-sectionally. Serum vitamin B12 and folate concentrations were analysed by chemiluminescence immunoassay. Plasma methylmalonic acid and total homocysteine concentrations were measured by liquid chromatography-tandem mass spectrometry and liquid chromatography, respectively. cB12 was calculated by using a formula involving blood parameters. Results Methylmalonic acid and folate concentrations in phenylketonuria group were higher compared with controls. Methylmalonic acid concentrations were high in 56.5% of the patients and 26.7% of the controls with normal vitamin B12 concentrations. Based on cB12, a significant difference within the normal values was detected between the groups. However, although 24.5% of phenylketonuria patients and 13.3% of controls had decreased vitamin B12 status according to cB12, there was no significant difference. Conclusion Children and adolescents with phenylketonuria having a strict diet can be at risk of functional vitamin B12 deficiency. This deficiency can be accurately determined by measuring methylmalonic acid concentrations. Calculation of cB12 as a biochemical index did not provide additional information compared with the measurement of methylmalonic acid alone, but may be helpful for classification of some patients with increased methylmalonic acid as having adequate vitamin B12 status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.