Guanine rich regions in DNA, which can form highly stable secondary structures, namely, G-quadruplex or G4 DNA structures, affect DNA replication and transcription. Molecules that stabilize G4 DNA have become important in recent years. In this study, G4 DNA stabilization, inhibition of telomerase, and anticancer activity of synthetic β-carboline-benzimidazole derivatives (5a, 5d, 5h, and 5r) were studied. Among them, derivatives containing a 4-methoxyphenyl ring at C and a 6-methoxy-substituted benzimidazole at C (5a) were found to stabilize telomeric G-quadruplex DNA efficiently. The stoichiometry and interaction of a synthetic, β-carboline-benzimidazole derivative, namely, 3-(6-methoxy-1H-benzo[d]imidazol-2-yl)-1-(4-methoxyphenyl)-9H-pyrido[3,4-b]indole (5a), with human intermolecular G-quadruplex DNA at low concentrations were examined using electrospray ionization mass spectrometry. Spectroscopy techniques indicate that 5a may intercalate between the two stacks of G-quadruplex DNA. This model is supported by docking studies. When cancer cells are treated with 5a, the cell cycle arrest occurs at the sub-G phase. In addition, an apoptosis assay and fluorescence microscopy studies using cancer cells indicate that 5a can induce apoptosis. Results of biochemical assays such as the polymerase chain reaction stop assay and telomerase activity assay indicate that 5a has the potential to stabilize G-quadruplex DNA, and thereby, it may interfere with in vitro DNA synthesis and decrease telomerase activity. The results of this study reveal that the β-carboline-benzimidazole derivative (5a) is efficient in G-quadruplex DNA stabilization over double-stranded DNA, inhibits telomerase activity, and induces apoptosis in cancer cells.
The 90 kDa heat shock proteins (Hsp90) are molecular chaperones that are responsible for the folding and/or trafficking of ~400 client proteins, many of which are directly associated with cancer progression. Consequently, inhibition of Hsp90 can exhibit similar activity as combination therapy as multiple signaling nodes can be targeted simultaneously. In fact, seventeen small-molecule inhibitors that bind the Hsp90 N-terminus entered clinical trials for the treatment of cancer, all of which exhibited pan-inhibitory activity against all four Hsp90 isoforms. Unfortunately, most demonstrated undesired effects alongside induction of the pro-survival heat shock response. As a result, isoform-selective inhibitors have been sought to overcome these detriments. Described herein is a structure-based approach to design Hsp90β-selective inhibitors along with preliminary SAR. In the end, compound 5 was shown to manifest ~370-fold selectivity for Hsp90β versus Hsp90α, and induced the degradation of select Hsp90β-dependent clients. These data support the development of Hsp90β-selective inhibitors as a new paradigm to overcome the detriments associated with pan-inhibition of Hsp90.
New drugs and new targets are urgently needed to treat tuberculosis. We discovered the Dphenylalanine-benzoxazole Q112 displays potent antibacterial activity against Mycobacterium tuberculosis (Mtb) in multiple media and in macrophage infections. Metabolomic profiling indicates that Q112 has a unique mechanism of action. Q112 perturbs the essential pantothenate/CoA biosynthetic pathway, depleting pantoate while increasing ketopantoate, as would be expected if ketopantoate reductase (KPR) were inhibited. We searched for alternative KPRs since the enzyme annotated as PanE KPR is not essential in Mtb. The ketolacid reductoisomerase IlvC catalyzes the KPR reaction in the close Mtb relative Corynebacterium glutamicum, but Mtb IlvC does not display KPR activity. We identified the essential protein Rv3603c as an ortholog of PanG KPR, and demonstrated that purified recombinant Rv3603c has KPR activity. Q112 inhibits Rv3603c, explaining the metabolomic changes. Surprisingly, pantothenate does not rescue Q112-treated bacteria, indicating that Q112 has an additional target(s). Q112-resistant strains contain loss-of-function mutations in the twin arginine translocaseTatABC, further underscoring Q112's unique mechanism of action. Loss of TatABC causes a severe fitness deficit attributed to changes in nutrient uptake, suggesting that Q112 resistance may derive from a decrease in uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.