A potential zircon reference material (BB zircon) for laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) U‐Pb geochronology and Hf isotope geochemistry is described. A batch of twenty zircon megacrysts (0.5–1.5 cm3) from Sri Lanka was studied. Within‐grain rare earth element (REE) compositions are largely homogeneous, albeit with some variation seen between fractured and homogeneous domains. Excluding fractured cathodoluminescence bright domains, the variation in U content for all analysed crystals ranged from 227 to 368 μg g−1 and the average Th/U ratios were between 0.20 and 0.47. The Hf isotope composition (0.56–0.84 g/100 g Hf) is homogeneous within and between the grains – mean 176Hf/177Hf of 0.281674 ± 0.000018 (2s). The calculated alpha dose of 0.59 × 1018 g−1 for a number of BB grains falls within the trend of previously studied, untreated zircon samples from Sri Lanka. Aliquots of the same crystal (analysed by ID‐TIMS in four different laboratories) gave consistent U‐Pb ages with excellent measurement reproducibility (0.1–0.4% RSD). Interlaboratory assessment (by LA‐ICP‐MS) from individual crystals returned results that are within uncertainty equivalent to the TIMS ages. Finally, we report on within‐ and between‐grain homogeneity of the oxygen isotope systematic of four BB crystals (13.16‰ VSMOW).
Establishing the source(s) of sedimentary material is critical to many geological applications, but is complicated by the ability of some minerals to be recycled. To test the relative utility of current proxies for determining a unique provenance, new samples have been collected from the Namurian Millstone Grit Group of Yorkshire, England. Two Kfeldspar 206 Pb/ 204 Pb isotope populations between 12.5 and 15.5 and c. 18.4 are consistent with Archaean-Proterozoic basement and Caledonian granites, respectively. Zircon U-Pb age populations at c. 2700, 2000-1000 and 430 Ma reflect a mixture of Archaean basement, overlying Proterozoic sediments and intrusive Caledonian granites, while εHf values in zircons of all ages indicate crystallization from reworked crust. Garnet major element compositions are relatively rich in Fe and low in Ca, indicative of derivation from a granulitic or charnockitic source. Rutile Cr/Nb ratios indicate source rocks were dominantly metapelitic, while Zr-in-rutile thermometry records two populations representing lower (c. 650ºC) and higher (c. 800ºC) metamorphic grade material. Combining these results with published monazite and muscovite data suggests overall derivation from the Greenland Caledonides, with additional contributions from NE Scotland and western Norway, highlighting the power of multi-proxy provenance work, especially in tectonically and geologically complicated regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.