Reinforced and prestressed concrete columns with one or two layers of carbon fibre reinforced polymer (CFRP) wrap were tested to failure in axial compression. When the results were compared with the maximum load predictions of two proposed design methods, the predictions consistently underestimated actual loads. The design methods are thus conservative. A simple analysis for circular columns reveals that the confining effect of the wrap is not engaged until the concrete actually starts failing and dilating. A finite element model of a chamfered square column confirms this analysis, as do strain readings from the tests. It is shown that strength gains are not linearly related to wrap thickness. The failure mechanism suggests that design should not be based on the ultimate strength or strain of the wrap and that strength gains can be expected to reduce with increasing brittleness of the concrete and with increasing eccentricity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.