Hereditary motor and sensory neuropathies, to which Charcot-Marie-Tooth (CMT) disease belongs, are a common cause of disability in adulthood. Growing awareness that axonal loss, rather than demyelination per se, is responsible for the neurological deficit in demyelinating CMT disease has focused research on the mechanisms of early development, cell differentiation, and cell-cell interactions in the peripheral nervous system. Autosomal recessive peripheral neuropathies are relatively rare but are clinically more severe than autosomal dominant forms of CMT, and understanding their molecular basis may provide a new perspective on these mechanisms. Here we report the identification of the gene responsible for hereditary motor and sensory neuropathy-Lom (HMSNL). HMSNL shows features of Schwann-cell dysfunction and a concomitant early axonal involvement, suggesting that impaired axon-glia interactions play a major role in its pathogenesis. The gene was previously mapped to 8q24.3, where conserved disease haplotypes suggested genetic homogeneity and a single founder mutation. We have reduced the HMSNL interval to 200 kb and have characterized it by means of large-scale genomic sequencing. Sequence analysis of two genes located in the critical region identified the founder HMSNL mutation: a premature-termination codon at position 148 of the N-myc downstream-regulated gene 1 (NDRG1). NDRG1 is ubiquitously expressed and has been proposed to play a role in growth arrest and cell differentiation, possibly as a signaling protein shuttling between the cytoplasm and the nucleus. We have studied expression in peripheral nerve and have detected particularly high levels in the Schwann cell. Taken together, these findings point to NDRG1 having a role in the peripheral nervous system, possibly in the Schwann-cell signaling necessary for axonal survival.
* Office of theCassettes have been developed that contain an antibiotic resistance marker with and without a promoterless gusA reporter gene. The nptll (encoding kanamycin resistance) or aacCl (encoding gentamicin resistance) genes were equipped with the tac promoter (PtaC) and the trpA terminator ( T , ) and then cloned between Not1 sites to construct the CAS-Nm (Ptac-npt//-TtpA) and CAS-Gm ( Pt , CP, , , c/ -aacC/ -T, )cassettes. The markers were also cloned downstream to a modified promoterless Escherichia coli gusA gene (containing TGA stop codons in all three reading frames prior to its RBS and start codon) to construct the cassettes. Cassettes containing the promoterless gusA create type I fusions with a target DNA sequence to detect transcriptional activity. The promoterless gusA gene has also been cloned into a broad-host-range IncPl plasmid. This construct will enable transcriptional activity to be monitored in different genetic backgrounds. Each cassette was cloned as a Not1 fragment into the Not1 site of a PUT derivative to construct four minitransposons. The mTn5-Nm (containing Ptac-npt//-TtwA) and mTn5-Gm (containing P, CP, , , , -aacC/ -TtwA) minitransposons have been constructed specifically for insertional inactivation studies. The minitransposons mTn5-GNm (containing gusA-P,,-npt / / -T, ) and mTn5-GGm (containing gusA-Pt,~P,,,-dacC/-TtpA) can be used for transcription signal localization or insertional inactivation. The TAC-31 R and TAC-105F primers can be used to sequence DNA flanking both sides of CAS-Nm, CAS-Gm, mTn5-Nm and mTn5-Gm. The WIL3 and TAC-105F primers can be used to sequence DNA flanking both sides of CAS-GNm, CAS-GGm, mTn5-GNm and mTn5-GGm. The specific application of these constructs to generate acid-or nodule-inducible fusions is presented. The new constructs provide useful tools for insertional mutagenesis, transcriptional signal localization and gene regulation studies in the root nodule bacteria and possibly other Gramnegative bacteria.CAS-G Nm (gUSA-Pt,,-npt//-TtpA) or CAS-GGm (gUSA-Pt,CP,,,c/-da~CI-TtpA)
SummaryA cluster of eight genes, vbsGSO, vbsADL, vbsC and vbsP, are involved in the synthesis of vicibactin, a cyclic, trihydroxamate siderophore made by the symbiotic bacterium Rhizobium leguminosarum. None of these vbs genes was required for symbiotic N 2 fixation on peas or Vicia. Transcription of vbsC, vbsGSO and vbsADL (but not vbsP) was enhanced by growth in low levels of Fe. Transcription of vbsGSO and vbsADL, but not vbsP or vbsC, required the closely linked gene rpoI, which encodes an ECF s factor of RNA polymerase. Transfer of the cloned vbs genes, plus rpoI, to Rhodobacter, Paracoccus and Sinorhizobium conferred the ability to make vicibactin on these other genera. We present a biochemical genetic model of vicibactin synthesis, which accommodates the phenotypes of different vbs mutants and the homologies of the vbs gene products. In this model, VbsS, which is similar to many non-ribosomal peptide synthetase multienzymes, has a central role. It is proposed that VbsS activates L-N 5 -hydroxyornithine via covalent attachment as an acyl thioester to a peptidyl carrier protein domain. Subsequent VbsA-catalysed acylation of the hydroxyornithine, followed by VbsLmediated epimerization and acetylation catalysed by VbsC, yields the vicibactin subunit, which is then trimerized and cyclized by the thioesterase domain of VbsS to give the completed siderophore.
Citation for published version (APA):Kalaydjieva, L., Gresham, D., Gooding, R., Heather, L., Baas, F., de Jonge, R., ... Thomas, P. K. (2000). N-myc downstream-regulated gene 1 is mutated in hereditary motor and sensory neuropathy-Lom. American Journal of Human Genetics, 67, 47-58. General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date: 11 May 2018Am. J. Hum. Genet. 67:47-58, 2000 47 Hereditary motor and sensory neuropathies, to which Charcot-Marie-Tooth (CMT) disease belongs, are a common cause of disability in adulthood. Growing awareness that axonal loss, rather than demyelination per se, is responsible for the neurological deficit in demyelinating CMT disease has focused research on the mechanisms of early development, cell differentiation, and cell-cell interactions in the peripheral nervous system. Autosomal recessive peripheral neuropathies are relatively rare but are clinically more severe than autosomal dominant forms of CMT, and understanding their molecular basis may provide a new perspective on these mechanisms. Here we report the identification of the gene responsible for hereditary motor and sensory neuropathy-Lom (HMSNL). HMSNL shows features of Schwann-cell dysfunction and a concomitant early axonal involvement, suggesting that impaired axonglia interactions play a major role in its pathogenesis. The gene was previously mapped to 8q24.3, where conserved disease haplotypes suggested genetic homogeneity and a single founder mutation. We have reduced the HMSNL interval to 200 kb and have characterized it by means of large-scale genomic sequencing. Sequence analysis of two genes located in the critical region identified the founder HMSNL mutation: a premature-termination codon at position 148 of the N-myc downstream-regulated gene 1 (NDRG1). NDRG1 is ubiquitously expressed and has been proposed to play a role in growth arrest and cell differentiation, possibly as a signaling protein shuttling between the cytoplasm and the nucleus. We have studied expression in peripheral nerve and have detected particularly high levels in the Schwann cell. Taken together, these findings point to NDRG1 having a role in the peripheral nervous system, possibly in the Schwann-cell signaling necessary for axonal survival. N-myc Downstream-Regulated Gene 1 Is Muta...
These findings in a large, well characterized asthma population, reveal that, while FLAP is an important enzyme in cys-LTs biosynthesis, polymorphisms in the ALOX5AP gene are not likely to be functionally associated with the asthma phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.