BackgroundCCCH zinc finger proteins contain a typical motif of three cysteines and one histidine residues and serve regulatory functions at all stages of mRNA metabolism. In plants, CCCH type zinc finger proteins comprise a large gene family represented by 68 members in Arabidopsis and 67 in rice. These CCCH proteins have been shown to play diverse roles in plant developmental processes and environmental responses. However, this family has not been studied in the model tree species Populus to date.ResultsIn the present study, a comprehensive analysis of the genes encoding CCCH zinc finger family in Populus was performed. Using a thorough annotation approach, a total of 91 full-length CCCH genes were identified in Populus, of which most contained more than one CCCH motif and a type of non-conventional C-X11-C-X6-C-X3-H motif was unique for Populus. All of the Populus CCCH genes were phylogeneticly clustered into 13 distinct subfamilies. In each subfamily, the gene structure and motif composition were relatively conserved. Chromosomal localization of these genes revealed that most of the CCCHs (81 of 90, 90 %) are physically distributed on the duplicated blocks. Thirty-four paralogous pairs were identified in Populus, of which 22 pairs (64.7 %) might be created by the whole genome segment duplication, whereas 4 pairs seem to be resulted from tandem duplications. In 91 CCCH proteins, we also identified 63 putative nucleon-cytoplasm shuttling proteins and 3 typical RNA-binding proteins. The expression profiles of all Populus CCCH genes have been digitally analyzed in six tissues across different developmental stages, and under various drought stress conditions. A variety of expression patterns of CCCH genes were observed during Populus development, of which 34 genes highly express in root and 22 genes show the highest level of transcript abundance in differentiating xylem. Quantitative real-time RT-PCR (RT-qPCR) was further performed to confirm the tissue-specific expression and responses to drought stress treatment of 12 selected Populus CCCH genes.ConclusionsThis study provides the first systematic analysis of the Populus CCCH proteins. Comprehensive genomic analyses suggested that segmental duplications contribute significantly to the expansion of Populus CCCH gene family. Transcriptome profiling provides first insights into the functional divergences among members of Populus CCCH gene family. Particularly, some CCCH genes may be involved in wood development while others in drought tolerance regulation. Our results presented here may provide a starting point for the functional dissection of this family of potential RNA-binding proteins.
BackgroundIn all domains of life, transfer RNA (tRNA) molecules contain modified nucleosides. Modifications to tRNAs affect their coding capacity and influence codon-anticodon interactions. Nucleoside modification deficiencies have a diverse range of effects, from decreased virulence in bacteria, neural system disease in human, and gene expression and stress response changes in plants. The purpose of this study was to identify genes involved in tRNA modification in the model plant Arabidopsis thaliana, to understand the function of nucleoside modifications in plant growth and development.ResultsIn this study, we established a method for analyzing modified nucleosides in tRNAs from the model plant species, Arabidopsis thaliana and hybrid aspen (Populus tremula × tremuloides). 21 modified nucleosides in tRNAs were identified in both species. To identify the genes responsible for the plant tRNA modifications, we performed global analysis of the Arabidopsis genome for candidate genes. Based on the conserved domains of homologs in Sacccharomyces cerevisiae and Escherichia coli, more than 90 genes were predicted to encode tRNA modifying enzymes in the Arabidopsis genome. Transcript accumulation patterns for the genes in Arabidopsis and the phylogenetic distribution of the genes among different plant species were investigated. Transcripts for the majority of the Arabidopsis candidate genes were found to be most abundant in rosette leaves and shoot apices. Whereas most of the tRNA modifying gene families identified in the Arabidopsis genome was found to be present in other plant species, there was a big variation in the number of genes present for each family.Through a loss of function mutagenesis study, we identified five tRNA modification genes (AtTRM10, AtTRM11, AtTRM82, AtKTI12 and AtELP1) responsible for four specific modified nucleosides (m1G, m2G, m7G and ncm5U), respectively (two genes: AtKTI12 and AtELP1 identified for ncm5U modification). The AtTRM11 mutant exhibited an early-flowering phenotype, and the AtELP1 mutant had narrow leaves, reduced root growth, an aberrant silique shape and defects in the generation of secondary shoots.ConclusionsUsing a reverse genetics approach, we successfully isolated and identified five tRNA modification genes in Arabidopsis thaliana. We conclude that the method established in this study will facilitate the identification of tRNA modification genes in a wide variety of plant species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.