Intestinal barrier dysfunction is an important contributor to alcoholic liver disease. Translocated microbial products trigger an inflammatory response in the liver and contribute to steatohepatitis. Our aim was to investigate mechanisms of barrier disruption following chronic alcohol feeding. A Lieber-DeCarli model was used to induce intestinal dysbiosis, increased intestinal permeability and liver disease in mice. Alcohol feeding for 8 weeks induced intestinal inflammation in the jejunum, which is characterized by an increased number of TNFα producing monocytes and macrophages. These findings were confirmed in duodenal biopsies from patients with chronic alcohol abuse. Intestinal decontamination with non-absorbable antibiotics restored eubiosis, decreased intestinal inflammation and permeability, and reduced alcoholic liver disease in mice. TNF-receptor I (TNFRI) mutant mice were protected from intestinal barrier dysfunction and alcoholic liver disease. To investigate whether TNFRI on intestinal epithelial cells mediates intestinal barrier dysfunction and alcoholic liver disease, we used TNFRI mutant mice carrying a conditional gain-of-function allele for this receptor. Reactivation of TNFRI on intestinal epithelial cells resulted in increased intestinal permeability and liver disease that is similar to wild type mice after alcohol feeding, suggesting that enteric TNFRI promotes intestinal barrier dysfunction. Myosin light chain kinase (MLCK) is a downstream target of TNFα and was phosphorylated in intestinal epithelial cells following alcohol administration. Using MLCK deficient mice, we further demonstrate a partial contribution of MLCK to intestinal barrier dysfunction and liver disease following chronic alcohol feeding. In conclusion, dysbiosis-induced intestinal inflammation and TNFRI signaling on intestinal epithelial cells are mediating a disruption of the intestinal barrier. Therefore, intestinal TNFRI is a crucial mediator of alcoholic liver disease.
Sepsis‐induced liver injury is recognized as a key problem in intensive care units. The gut microbiota has been touted as an important mediator of liver disease development; however, the precise roles of gut microbiota in regulating sepsis‐induced liver injury are unknown. Here, we aimed to investigate the role of the gut microbiota in sepsis‐induced liver injury and the underlying mechanism. Cecal ligation and puncture (CLP) was used to induce polymicrobial sepsis and related liver injury. Fecal microbiota transplantation (FMT) was used to validate the roles of gut microbiota in these pathologies. Metabolomics analysis was performed to characterize the metabolic profile differences between sepsis‐resistant (Res; survived to 7 days after CLP) and sepsis‐sensitive (Sen; moribund before or approximately 24 hours after CLP) mice. Mice gavaged with feces from Sen mice displayed more‐severe liver damage than did mice gavaged with feces from Res mice. The gut microbial metabolic profile between Sen and Res mice was different. In particular, the microbiota from Res mice generated more granisetron, a 5‐hydroxytryptamine 3 (5‐HT3) receptor antagonist, than the microbiota from Sen mice. Granisetron protected mice against CLP‐induced death and liver injury. Moreover, proinflammatory cytokine expression by macrophages after lipopolysaccharide (LPS) challenge was markedly reduced in the presence of granisetron. Both treatment with granisetron and genetic knockdown of the 5‐HT3A receptor in cells suppressed nuclear factor kappa B (NF‐кB) transactivation and phosphorylated p38 (p‐p38) accumulation in macrophages. Gut microbial granisetron levels showed a significantly negative correlation with plasma alanine aminotransferase (ALT)/aspartate aminotransferase (AST) levels in septic patients. Conclusion: Our study indicated that gut microbiota plays a key role in the sensitization of sepsis‐induced liver injury and associates granisetron as a hepatoprotective compound during sepsis development.
Key Points• TPO-RAs shift monocyte FcgR balance toward the inhibitory FcgRIIb and correct the enhanced phagocytic capacity of macrophages in ITP.Elevated expression of the activating Fcg receptor (FcgR) I and FcgRIIa together with decreased expression of the inhibitory FcgRIIb are involved in the pathogenesis of primary immune thrombocytopenia (ITP). Thrombopoietin receptor agonists (TPO-RAs) have been used clinically for the management of ITP; however, little is known about the effect of TPO-RAs on FcgR modulation in ITP. In this prospective study, we measured the alteration in monocyte FcgR expression from 21 corticosteroid-resistant/relapsed patients with chronic ITP receiving eltrombopag therapy. Results showed that the mRNA and protein levels of FcgRIIb were significantly elevated after 6-week eltrombopag treatment. Concurrently, FcgRI and IIa levels decreased remarkably, whereas FcgRIII expression did not change. In vitro phagocytosis assays indicated that a shift in the balance of FcgR toward inhibitory FcgRIIb on monocytes was accompanied with a considerable decrease in monocyte/macrophage phagocytic capacity. The response to eltrombopag therapy in patients with ITP was associated with FcgR phenotype and functional changes of monocytes/macrophages. Moreover, the plasma transforming growth factor-b1 (TGF-b1) concentrations increased significantly in eltrombopag responders. Modulation of monocyte FcgR balance by TPO-RAs was also found in a murine model of ITP established by transferring splenocytes from immunized CD61 knockout mice into CD61 1 severe combined immunodeficient mice. Romiplostim administration in ITP mice significantly upregulated inhibitory FcgRII expression and downregulated activating FcgRI expression. These findings showed that recovery of platelet counts after TPO-RA treatment in ITP is associated with the restoration of FcgR balance toward the inhibitory FcgRIIb on monocytes, and suggested that thrombopoietic agents have a profound effect on immune modulation in ITP. This study is registered at ClinicalTrials.gov as #NCT01864512. (Blood. 2016;128(6):852-861)
Alcoholic liver disease is a leading cause of morbidity and liver-related death worldwide. Intestinal bacterial overgrowth and dysbiosis induced by ethanol ingestion play an important role in the pathogenesis of alcoholic liver disease. After exposure to alcohol in the lumen, enteric bacteria alter their metabolism and thereby disturb intestinal homeostasis. Disruption of the mucosal barrier results in the translocation of microbial products that contribute to liver disease by inducing hepatic inflammation. In this review, we will discuss the effects of alcohol on the intestinal microbiome, and in particular, its effects on bacterial metabolism, bacterial translocation and ecological balance. A better understanding of the interactions among alcohol, the host and the microbiome will reveal new targets for therapy and lead to new treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.