The self-assembly of diblock copolymers under soft confinement is studied systematically using a simulated annealing method applied to a lattice model of polymers. The soft confinement is realized by the formation of polymer droplets in a poor solvent environment. Multiple sequences of soft confinement-induced copolymer aggregates with different shapes and self-assembled internal morphologies are predicted as functions of solvent-polymer interaction and the monomer concentration. It is discovered that the self-assembled internal morphology of the aggregates is largely controlled by a competition between the bulk morphology of the copolymer and the solvent-polymer interaction, and the shape of the aggregates can be non-spherical when the internal morphology is anisotropic and the solvent-polymer interaction is weak. These results demonstrate that droplets of diblock copolymers formed in poor solvents can be used as a model system to study the self-assembly of copolymers under soft confinement.
The thermodynamic behavior of a strongly charged polyelectrolyte chain immersed in a salt-free solution is studied using replica-exchange Monte-Carlo simulations. The results reveal that the chain can assume a variety of conformations, and it undergoes two phase transitions upon cooling. The first transition is identified as a continuous counterion condensation transition while the second one as a first-order coil-globule transition. In the globular state, the counterions and the charged chain segments are densely packed forming a three-dimensional Wigner crystal.
The nature of coil-globule transition and scaling behavior of a strongly charged polyelectrolyte chain in a solution system with explicit neutralizing counterions and solvent molecules are studied using replica-exchange Monte Carlo simulations, focusing on the effects of finite chain length. The results reveal that at the thermodynamic limit of infinitely long chain length, the coil-globule transition may remain first order. Phase transition temperatures at various ion concentrations are obtained by extrapolating the values obtained at finite chain lengths. Furthermore, it is found that the exponent ν of the radius of gyration, ~ N(2ν), can be slightly larger than 1 under some conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.