By coupling the N=2 spinning particle to background vector fields, we construct Yang-Mills amplitudes for trees and one loop. The vertex operators are derived through coupling the BRST charge; therefore background gauge invariance is manifest, and the Yang-Mills ghosts are automatically included in loop calculations by worldline ghosts. Inspired by string calculations, we extend the usual worldline approach to incorporate more "generalized" 1D manifolds. This new approach should be useful for constructing higher-point and higher-loop amplitudes.
We propose a general method to obtain the scalar worldline Green function on an arbitrary 1D topological space, with which the first-quantized method of evaluating 1-loop Feynman diagrams can be generalized to calculate arbitrary ones. The electric analog of the worldline Green function problem is found and a compact expression for the worldline Green function is given, which has similar structure to the 2D bosonic Green function of the closed bosonic string.
Abstract. Consider a measurable space with an atomless finite vector measure. This measure defines a mapping of the σ-field into a Euclidean space. According to the Lyapunov convexity theorem, the range of this mapping is a convex compactum. Similar ranges are also defined for measurable subsets of the space. Two subsets with the same vector measure may have different ranges. We investigate the question whether, among all the subsets having the same given vector measure, there always exists a set with the maximal range of the vector measure. The answer to this question is positive for two-dimensional vector measures and negative for higher dimensions. We use the existence of maximal ranges to strengthen the Dvoretzky-Wald-Wolfowitz purification theorem for the case of two measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.