In this study, we introduce a genetic algorithm (GA) into the catenary theory model to achieve automatic and inverse design for terahertz (THz) metasurface absorbers. The GA method was employed by seeking optimal dispersion distributions to achieve broadband impedance matching. A THz dual-metasurface absorber was designed using the proposed approach. The designed metasurface absorber exhibits an absorbance exceeding 88% at 0.21–5 THz. Compared to the traditional design method, the proposed method can reduce time consumption and find the optimal result to achieve high performance. The investigations provide important guidance and a promising approach for designing metasurface-based devices for practical applications.
In the past decades, metasurfaces have shown their extraordinary abilities on manipulating the wavefront of electromagnetic wave. Based on the ability, various kinds of metasurfaces are designed to realize new functional metadevices based on wavefront manipulations, such as anomalous beam steering, focus metalens, vortex beams generator, and holographic imaging. However, most of the previously proposed designs based on metasurfaces are fixed once design, which is limited for applications where light modulation needs to be tunable. In this paper, we proposed a design for THz tunable wavefront manipulation achieved by the combination of plasmonic metasurface and phase change materials (PCMs) in THz region. Here, we designed a metal-insulator-metal (MIM) metasurface with the typical C-shape split ring resonator (CSRR), whose polarization conversion efficiency is nearly 90% for circular polarized light (CPL) in the range of 0.95~1.15 THz when PCM is in the amorphous state, but the conversion efficiency turns to less than 10% in the same frequency range when PCM switches into the crystalline state. Then, benefiting from the high polarization conversion contrast of unit cell, we can achieve tunable wavefront manipulation by utilizing the Pancharatnam–Berry (PB) phase between the amorphous and crystalline states. As a proof-of-concept, the reflective tunable anomalous beam deflector and focusing metalens are designed and characterized, and the results further verify their capability for tunable wavefront manipulation in THz range. It is believed that the design in our work may pave the way toward the tunable wavefront manipulation of THz waves and is potential for dynamic tunable THz devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.