Human prostate secretory epithelial cells have the uniquely specialized function of accumulating and secreting extremely high levels of citrate. This is achieved by their ability to accumulate high cellular levels of zinc that inhibit citrate oxidation. This process of net citrate production requires unique metabolic/bioenergetic mitochondrial relationships. In prostate cancer, the malignant cells undergo a metabolic transformation from zinc-accumulating citrate-producing sane cells to citrateoxidizing malignant cells that lost the ability to accumulate zinc. This review describes the metabolic/bioenergetic, zinc and mitochondrial relationships involved in normal and malignant prostate. Hopefully, this report will generate much needed interest and research in this neglected, but critically important, area of investigation.
Background: The genetic and molecular mechanisms responsible for and associated with the development and progression of prostate malignancy are largely unidentified. The peripheral zone is the major region of the human prostate gland where malignancy develops. The normal peripheral zone glandular epithelium has the unique function of accumulating high levels of zinc. In contrast, the ability to accumulate zinc is lost in the malignant cells. The lost ability of the neoplastic epithelial cells to accumulate zinc is a consistent factor in their development of malignancy. Recent studies identified ZIP1 (SLC39A1) as an important zinc transporter involved in zinc accumulation in prostate cells. Therefore, we investigated the possibility that down-regulation of hZIP1 gene expression might be involved in the inability of malignant prostate cells to accumulate zinc. To address this issue, the expression of hZIP1 and the depletion of zinc in malignant versus non-malignant prostate glands of prostate cancer tissue sections were analyzed. hZIP1 expression was also determined in malignant prostate cell lines.
The most consistent and persistent biochemical characteristic of prostate cancer (PCa) is the marked decrease in zinc and citrate levels in the malignant cells. This relationship provides compelling evidence that the lost ability of the malignant cells to accumulate zinc is an important factor in the development and progression of prostate malignancy. In addition, this relationship provides a rational basis for the concept that restoration of high zinc levels in malignant cells could be efficacious in the treatment and prevention of PCa. Epidemiological studies regarding dietary zinc effects on PCa have been conflicting and confusing. The purpose of this presentation is to present a current state of information regarding zinc relationships in the pathogenesis and treatment of PCa. We also hope to bring more attention to the medical and research community of the critical need for concerted clinical and basic research regarding zinc and PCa.
Exposure to zinc induces apoptosis in PC-3 and BPH cells, which accumulate high intracellular levels of zinc, but not in HPR-1 cells, which do not accumulate high levels of zinc. Once initiated, the induction of apoptosis is not reversed by the removal of zinc, i.e., it is an irreversible process. The apoptogenic effect is due to a direct effect of zinc on mitochondria that results in the release of cytochrome c. The cell specificity of zinc induction of apoptogenesis is dependent on the ability of the cells to accumulate high levels of intracellular zinc and on the ability of the mitochondria to respond to the direct effect of zinc.
BACKGROUND-Normal human prostate accumulates the highest levels of zinc of any soft tissue in the body. In contrast, the zinc level in prostate cancer is markedly decreased from the level detected in nonprostate tissues. Despite these relationships, the possible role of zinc in the growth of normal and malignant prostate has not been determined. METHODS-Growth inhibition and various regulatory responses were investigated in two human prostate carcinoma cell lines (LNCaP and PC-3), treated with or without zinc. RESULTS-Incubation of the prostate carcinoma cell lines with physiological levels of zinc resulted in the marked inhibition of cell growth. A lower 50% inhibition of cell growth (IC 50) value for zinc (about 100 ng/ml) was detected in LNCaP cells, which are androgen-responsive, whereas androgen-independent PC-3 cells exhibited a higher IC 50 for zinc (about 700 ng/ml). Incubation with 1 μg/ml zinc resulted in maximum inhibition of growth in both cell lines. These inhibitory effects of zinc correlated well with the accumulation of zinc in the cells. Simultaneously, cell flow cytometric analyses revealed a dramatic increase of the cell population in G2/M phase, in both LNCaP (2.3-fold vs. control) and PC-3 (1.9-fold vs. control), and a decreased proportion of cells in S phase (LNCaP, −51.4%; PC-3, −23%), indicating a G2/M phase arrest. The cell growth inhibition and G2/M arrest in these cells were accompanied by an increase in apoptosis, as demonstrated by the characteristic cell morphology and further confirmed by cellular DNA fragmentation. The specificity of zinc-induced apoptosis was identified by ethylenediamine-tetraacetic acid (EDTA)-chelation, which abolished the zinc effect on cellular DNA fragmentation. The zinc-induced G2/M phase arrest and apoptosis were accompanied by increased mRNA levels of p21 Waf1/Cip1/Sdi1 in both LNCaP (p53+/+) and PC-3 (p53−/−) cells. CONCLUSIONS-These results suggest that zinc inhibits human prostatic carcinoma cell growth, possibly due to induction of cell cycle arrest and apoptosis. There now exists strong evidence that the loss of a unique capability to retain high levels of zinc is an important factor in the development and progression of malignant prostate cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.