Following pioneering work, solution-processable organic-inorganic hybrid perovskites-such as CH3NH3PbX3 (X = Cl, Br, I)-have attracted attention as light-harvesting materials for mesoscopic solar cells. So far, the perovskite pigment has been deposited in a single step onto mesoporous metal oxide films using a mixture of PbX2 and CH3NH3X in a common solvent. However, the uncontrolled precipitation of the perovskite produces large morphological variations, resulting in a wide spread of photovoltaic performance in the resulting devices, which hampers the prospects for practical applications. Here we describe a sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film. PbI2 is first introduced from solution into a nanoporous titanium dioxide film and subsequently transformed into the perovskite by exposing it to a solution of CH3NH3I. We find that the conversion occurs within the nanoporous host as soon as the two components come into contact, permitting much better control over the perovskite morphology than is possible with the previously employed route. Using this technique for the fabrication of solid-state mesoscopic solar cells greatly increases the reproducibility of their performance and allows us to achieve a power conversion efficiency of approximately 15 per cent (measured under standard AM1.5G test conditions on solar zenith angle, solar light intensity and cell temperature). This two-step method should provide new opportunities for the fabrication of solution-processed photovoltaic cells with unprecedented power conversion efficiencies and high stability equal to or even greater than those of today's best thin-film photovoltaic devices.
Dye-sensitized solar cells have gained widespread attention in recent years because of their low production costs, ease of fabrication and tunable optical properties, such as colour and transparency. Here, we report a molecularly engineered porphyrin dye, coded SM315, which features the prototypical structure of a donor-π-bridge-acceptor and both maximizes electrolyte compatibility and improves light-harvesting properties. Linear-response, time-dependent density functional theory was used to investigate the perturbations in the electronic structure that lead to improved light harvesting. Using SM315 with the cobalt(II/III) redox shuttle resulted in dye-sensitized solar cells that exhibit a high open-circuit voltage VOC of 0.91 V, short-circuit current density JSC of 18.1 mA cm(-2), fill factor of 0.78 and a power conversion efficiency of 13%.
ABSTRACT:We report for the first time on a hole conductor-free mesoscopic lead iodide CH3NH3PbI3(perovskite)/TiO2 heterojunction solar cell, produced by deposition of perovskite nanoparticles from a solution of CH3NH3I and PbI2 in -butyrolactone on a 400nm thick film of TiO2 (anatase) nanosheets exposing (001) facets. An Au film was evaporated on top of the CH3NH3PbI3 served as a back contact. Importantly, the CH3NH3PbI3 nanoparticles act assumes here simultaneously the role of light harvester and hole conductor rendering superfluous the use of an additional hole transporting material. The simple mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell shows impressive photovoltaic performance with short circuit photocurrent (Jsc) of 16.1 mA/cm 2 , an open circuit photovoltage (Voc) of 0.631 V and a fill factor (FF) of 0.57, corresponding to a light to electric power conversion efficiency (PCE) of 5.5% under standard AM 1.5 solar light of 1000 W/m 2 intensity. At a lower light intensity of 100W/m 2 a PCE of 7.3 % was measured. The advent of such simple solution processed mesoscopic heterojunction solar cells paves the way for new advances to realize low cost, high-efficiency solar cells.
This review presents the state-of-the-art organohalide lead perovskites, which are currently making an immense impact across the photovoltaic community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.