Mobility and spatial interaction data have become increasingly available due to the wide adoption of location-aware technologies. Examples of mobility data include human daily activities, vehicle trajectories, and animal movements, among others. In this article we focus on a special type of mobility data, i.e. origin-destination pairs, and present a new approach to the discovery and understanding of spatio-temporal patterns in the movements. Specifically, to extract information from complex connections among a large number of point locations, the approach involves two steps: (1) spatial clustering of massive GPS points to recognize potentially meaningful places; and (2) extraction and mapping of the flow measures of clusters to understand the spatial distribution and temporal trends of movements. We present a case study with a large dataset of taxi trajectories in Shenzhen, China to demonstrate and evaluate the methodology. The contribution of the research is two-fold. First, it presents a new methodology for detecting location patterns and spatial structures embedded in
Bacteria, as the key component of soil ecosystems, participate in nutrient cycling and organic matter decomposition. However, how fertilization regime affects the rhizospheric bacterial community of reddish paddy soil remains unclear. Here, a long-term fertilization experiment initiated in 1982 was employed to explore the impacts of different fertilization regimes on physicochemical properties and bacterial communities of reddish paddy rhizospheric soil in Central South China by sequencing the 16S rRNA gene. The results showed that long-term fertilization improved the soil nutrient status and shaped the distinct rhizospheric bacterial communities. Particularly, chemical NPK fertilizers application significantly declined the richness of the bacterial community by 7.32%, whereas the application of manure alone or combined with chemical NPK fertilizers significantly increased the biodiversity of the bacterial community by 1.45%, 1.87% compared with no fertilization, respectively. Moreover, LEfSe indicated that application of chemical NPK fertilizers significantly enhanced the abundances of Verrucomicrobia and Nitrospiraceae, while manure significantly increased the abundances of Deltaproteobacteria and Myxococcales, but the most abundant Actinobacteria and Planctomycetes were detected in the treatment that combined application of manure and chemical NPK fertilizers. Furthermore, canonical correspondence analysis (CCA) and the Mantel test clarified that exchangeable Mg2+ (E-Mg2+), soil organic carbon (SOC) and alkali-hydrolyzable nitrogen (AN) are the key driving factors for shaping bacterial communities in the rhizosphere. Our results suggested that long-term balanced using of manure and chemical fertilizers not only increased organic material pools and nutrient availability but also enhanced the biodiversity of the rhizospheric bacterial community and the abundance of Actinobacteria, which contribute to the sustainable development of agro-ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.