Measurement of four dNTP pools is important for investigating metabolism, genome stability, and drug action. In this report, we developed a two-step method for quantitating dNTPs by the combination of rolling circle amplification (RCA) and quantitative polymerase chain reaction (qPCR). We used CircLigase to generate a single-strand DNA in circular monomeric configuration, which was then used for the first step of RCA reaction that contained three dNTPs in excess for quantification of one dNTP at limiting levels. The second step is the amplification of RCA products by qPCR, in which one primer was designed to be completely annealed with the polymeric ssDNA product but not the monomeric template DNA. Using 1 amol of the template in the assay, each dNTP from 0.02 to 2.5 pmol gave a linearity with r 2 > 0.99, and the quantification was not affected by the presence of rNTPs. We further found that the preparation of biological samples for the RCA reaction required methanol and chloroform extraction. The method was so sensitive that 1 × 10 4 cells were sufficient for dNTP quantification with the results similar to those determined by a radio-isotope method using 2 × 10 5 cells. Thus, the RCA/qPCR method is convenient, cost-effective, and highly sensitive for dNTP quantification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.