Wearing a face mask has become essential to contain the spread of COVID-19 and has become mandatory when collecting fMRI data at most research institutions. Here, we investigate the effects of wearing a surgical mask on fMRI data in n = 37 healthy participants. Activations during finger tapping, emotional face matching, working memory tasks, and rest were examined. Preliminary fMRI analyses show that despite the different mask states, resting-state signals and task activations were relatively similar. Resting-state functional connectivity showed negligible attenuation patterns in mask-on compared with mask-off. Task-based ROI analysis also demonstrated no significant difference between the two mask states under each contrast investigated. Notwithstanding the overall insignificant effects, these results indicate that wearing a face mask during fMRI has little to no significant effect on resting-state and task activations.
Attention-deficit/hyperactivity disorder (ADHD) is a childhood mental health disorder that often persists to adulthood and is characterized by inattentive, hyperactive, or impulsive behaviors. This study investigated structural and effective connectivity differences through voxel-based morphometry (VBM) and Granger causality analysis (GCA) across child, adolescent, and adult ADHD patients. Structural and functional MRI data consisting of 35 children (8.64 ± 0.81 years), 40 adolescents (14.11 ± 1.83 years), and 39 adults (31.59 ± 10.13 years) was obtained from New York University Child Study Center for the ADHD-200 and UCLA dataset. Structural differences in the bilateral pallidum, bilateral thalamus, bilateral insula, superior temporal cortex, and the right cerebellum were observed among the three ADHD groups. The right pallidum was positively correlated with disease severity. The right pallidum as a seed precedes and granger causes the right middle occipital cortex, bilateral fusiform, left postcentral gyrus, left paracentral lobule, left amygdala, and right cerebellum. Also, the anterior cingulate cortex, prefrontal cortex, left cerebellum, left putamen, left caudate, bilateral superior temporal pole, middle cingulate cortex, right precentral gyrus, and the left supplementary motor area demonstrated causal effects on the seed region. In general, this study showed the structural differences and the effective connectivity of the right pallidum amongst the three ADHD age groups. Our work also highlights the evidence of the frontal-striatal-cerebellar circuits in ADHD and provides new insights into the effective connectivity of the right pallidum and the pathophysiology of ADHD. Our results further demonstrated that GCA could effectively explore the interregional causal relationship between abnormal regions in ADHD.
Background: Previous studies have used regional cerebral blood flow (CBF) hemodynamic response to measure brain activities. In this work, we use a laser speckle contrast imaging (LSCI) apparatus to sample the CBF activation in somatosensory cortex (S1BF) with repetitive whisker stimulation. Traditionally, the CBF activations were processed by depicting the change percentage above baseline; however, it is not clear how different methods influence the detection of activations.Aims: Thus, in this work we investigate the influence of different methods to detect activations in LSCI. Materials & Methods: First, principal component analysis (PCA) was performed to denoise the CBF signal. As the signal of the first principal component (PC1) showed the highest correlation with the S1BF CBF response curve, PC1 was used in the subsequent analyses. Then, we used fast Fourier transform (FFT) to evaluate the frequency properties of the LSCI images and the activation map was generated based on the amplitude of the central frequency. Furthermore, Pearson's correlation coefficient (C-C) analysis and a general linear model (GLM) were performed to estimate the S1BF activation based on the time series of PC1.Results: We found that GLM performed better in identifying activation than C-C.Additionally, the activation maps generated by FFT were similar to those obtained by GLM. Particularly, the superficial vein and arterial vessels separated the activation region as segmented activated areas, and the regions with unresolved vessels showed a common activation for whisker stimulation. Discussion and Conclusion:Our research analyzed the extent to which PCA can extract meaningful information from the signal and we compared the performance for detecting brain functional activation between different methods that rely on LSCI. This can be used as a reference for LSCI researchers on choosing the best method to estimate brain activation.
Background Alzheimer's disease, one of the most leading nervous system diseases, is accompanied by symptoms including loss of memory, thinking, and language ability. Both mild cognitive impairment (MCI) and very MCI (VMCI) are the transitional pathological stage between normal ageing and AD. While the changes to whole-brain structural and functional information have been extensively investigated in AD, the impaired structure-function coupling within whole brain remains unknown. Methods Current study employed the OASIS-3 dataset including 53 MCI, 90 VMCI and 100 age-, gender- and education-matched normal controls (NC). Several structural and functional parameters including amplitude of low frequency fluctuations (ALFF), voxel-based morphometry and ALFF/VBM ratio analysis were used to estimate the whole-brain abnormalities among MCI, VMCI and NC. Results As the disease symptoms became more severe, these regions distributing in the cerebellum and putamen within gray matter exhibited progressively increasing ALFF (ALFFNC < ALFFVMCI < ALFFMCI). Similar results were also found in the frontal-inf-orb, putamen, and paracentral-lobule within white matter. More importantly, as the symptoms of disease got worse, parahippocampal gyrus and hippocampus within gray matter showed progressively decreasing structure-function coupling, and was also applicable to the cuneus and frontal lobe within WM. In addition, the structure-function coupling values in the parahippocampal gyrus and hippocampus were positive relationship with severity of cognitive impairment, suggesting the important applications of the structure-function coupling index in brain disorders. Conclusion Our findings provided a novel information for discovering the pathophysiological mechanisms and indicated that WM lesions were also an important cause of cognitive decline in AD.
In this study, we examined structural and functional profiles of the insular cortex and mapped associations with well-described functional networks throughout the brain using diffusion tensor imaging (DTI) and resting-state functional connectivity (RSFC) data. We used a data-driven method to independently estimate the structural–functional connectivity of the insular cortex. Data were obtained from the Human Connectome Project comprising 108 adult participants. Overall, we observed moderate to high associations between the structural and functional mapping scores of 3 different insular subregions: the posterior insula (associated with the sensorimotor network: RSFC, DTI = 50% and 72%, respectively), dorsal anterior insula (associated with ventral attention: RSFC, DTI = 83% and 83%, respectively), and ventral anterior insula (associated with the frontoparietal: RSFC, DTI = 42% and 89%, respectively). Further analyses utilized meta-analytic decoding maps to demonstrate specific cognitive and affective as well as gene expression profiles of the 3 subregions reflecting the core properties of the insular cortex. In summary, given the central role of the insular in the human brain, our results revealing correspondence between DTI and RSFC mappings provide a complementary approach and insight for clinical researchers to identify dysfunctional brain organization in various neurological disorders associated with insular pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.