Novel activated boron nitride (BN) as an effective adsorbent for pollutants in water and air has been reported in the present work. The activated BN was synthesized by a simple structure-directed method that enabled us to control the surface area, pore volume, crystal defects and surface groups. The obtained BN exhibits an super high surface area of 2078 m2/g, a large pore volume of 1.66 cm3/g and a special multimodal microporous/mesoporous structure located at ~ 1.3, ~ 2.7, and ~ 3.9 nm, respectively. More importantly, the novel activated BN exhibits an excellent adsorption performance for various metal ions (Cr3+, Co2+, Ni2+, Ce3+, Pb2+) and organic pollutants (tetracycline, methyl orange and congo red) in water, as well as volatile organic compounds (benzene) in air. The excellent reusability of the activated BN has also been confirmed. All the features render the activated BN a promising material suitable for environmental remediation.
Prompted by the very recent claim that the volleyball-shaped B(80) fullerene [X. Wang, Phys. Rev. B 82, 153409 (2010)] is lower in energy than the B(80) buckyball [N. G. Szwacki, A. Sadrzadeh, and B. I. Yakobson, Phys. Rev. Lett. 98, 166804 (2007)] and core-shell structure [J. Zhao, L. Wang, F. Li, and Z. Chen, J. Phys. Chem. A 114, 9969 (2010)], and inspired by the most recent finding of another core-shell isomer as the lowest energy B(80) isomer [S. De, A. Willand, M. Amsler, P. Pochet, L. Genovese, and S. Goedecher, Phys. Rev. Lett. 106, 225502 (2011)], we carefully evaluated the performance of the density functional methods in the energetics of boron clusters and confirmed that the core-shell construction (stuffed fullerene) is thermodynamically the most favorable structural pattern for B(80). Our global minimum search showed that both B(101) and B(103) also prefer a core-shell structure and that B(103) can reach the complete core-shell configuration. We called for great attention to the theoretical community when using density functionals to investigate boron-related nanomaterials.
Although most of the MC-type metallofullerenes (EMFs) tend to form carbide cluster EMFs, we report herein that Lu-containing EMFs LuC (2n = 82, 84, 86) are actually dimetallofullerenes (di-EMFs), namely, Lu@C(6)-C, Lu@C(8)-C, Lu@D(23)-C, and Lu@C(9)-C. Unambiguous X-ray results demonstrate the formation of a Lu-Lu single bond between two lutetium ions which transfers four electrons in total to the fullerene cages, thus resulting in a formal divalent state for each Lu ion. Population analysis indicates that each Lu atom formally donates a 5d electron and a 6s electron to the cage with the remaining 6s electron shared with the other Lu atom to form a Lu-Lu single bond so that only four electrons are transferred to the fullerene cages with the formal divalent valence for each lutetium ion. Accordingly, we confirmed both experimentally and theoretically that the dominating formation of di-EMFs is thermodynamically very favorable for LuC isomers.
The imine condensation reaction of 5,5'-(benzo[c]- [1,2,5]thiadiazole-4,7-diyl)diisophthalaldehyde with cyclohexanediamine resulted in as hape-persistent multifunctional tubular organic cage (MTC1). It exhibits selective fluorescence sensing towards divalent Pd ions with avery lowdetection limit (38 ppb), suggesting effective complexation between these two species.S ubsequent reduction of MTC1 and Pd(OAc) 2 with NaBH 4 afforded acage-supported catalyst with well-dispersed ultrafine Pd nanoparticles (NPs) in anarrowsizedistribution (1.9 AE 0.4 nm), denoted as Pd@MTC1-1/5. Suchu ltrafine Pd NPs in Pd@MTC1-1/5, in cooperation with photocatalytically active MTC1, enable efficient sequential reactions involving visible light-induced aerobic hydroxylation of 4-nitrophenylboronic acid to 4-nitrophenol and the following hydride reduction with NaBH 4 .T his is the first example of am ultifunctional organic cage capable of sensing,d irecting nanoparticle growth, and catalyzing sequential reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.