In order to further mine the deep semantic information of the microbial text of public health emergencies, this paper proposes a multichannel microbial sentiment analysis model MCMF-A. Firstly, we use word2vec and fastText to generate word vectors in the feature vector embedding layer and fuse them with lexical and location feature vectors; secondly, we build a multichannel layer based on CNN and BiLSTM to extract local and global features of the microbial text; then we build an attention mechanism layer to extract the important semantic features of the microbial text; thirdly, we merge the multichannel output in the fusion layer and use soft; finally, the results are merged in the fusion layer, and a surtax function is used in the output layer for sentiment classification. The results show that the F1 value of the MCMF-A sentiment analysis model reaches 90.21%, which is 9.71% and 9.14% higher than the benchmark CNN and BiLSTM models, respectively. The constructed dataset is small in size, and the multimodal information such as images and speech has not been considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.