Cell penetrating peptides (CPPs) are short peptides that can carry biomolecules of varying sizes across the cell membrane into the cytoplasm. Correctly identifying CPPs is the basis for studying their functions and mechanisms. Here, we propose a novel CPP predictor that is able to predict CPPs and their uptake efficiency. In our method, five feature descriptors are applied to encode the sequence and compose a hybrid feature vector. Afterward, the wrapper + random forest algorithm is employed, which combines feature selection with the prediction process to find features that are crucial for identifying CPPs. The jackknife cross validation result shows that our predictor is comparable to state-of-the-art CPP predictors, and our method reduces the feature dimension, which improves computational efficiency and avoids overfitting, allowing our predictor to be adopted to identify large-scale CPP data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.