Topological protection wave engineering in artificially structured media is at the forefront of metamaterials research. Acoustic analogs of electronic topological insulators have brought a lot of new opportunities for manipulating sound propagation and have attracted the attention of many scholars. A variety of artificial acoustic systems hosting topological edge states have been proposed. However, the pseudo-spin edge states at a boundary have not been clearly and intuitively characterized. In this article, we provide experimental verification of pseudo-spin states by the method of acoustic particle manipulation by using the rotation of the particle to describe the pseudo-spin sound field characteristics at the boundary of the acoustic topological insulator in detail. It indicates the existence of pseudo-spin–orbit coupling effects and pseudo-spin-related acoustic unidirectional transmission even if the defect exists. Furthermore, the pseudo-spin sound field can be used to control the rotation of multiple particles and droplets. This kind of topological acoustic tweezer with defect immunity has great application potential in the fields of biomedicine and materials science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.