A portable forensic genetic analysis system consisting of a microfluidic device for amplification and separation of short tandem repeat (STR) fragments as well as an instrument for chip operation and four-color fluorescence detection has been developed. The microdevice performs polymerase chain reaction (PCR) in a 160-nL chamber and capillary electrophoresis (CE) in a 7-cm-long separation channel. The instrumental design integrates PCR thermal cycling, electrophoretic separation, pneumatic valve fluidic control, and four-color laser excited fluorescence detection. A quadruplex Y-chromosome STR typing system consisting of amelogenin and three Y STR loci (DYS390, DYS393, DYS439) was developed and used for validation studies. The multiplex amplification of these 4 loci with 35 PCR cycles followed by CE separation and 4-color fluorescence detection was completed in 1.5 h. All the amplicons can be detected with a limit of detection of 20 copies of male standard DNA in the reactor. Real-world forensic analyses of oral swab and human bone extracts from case evidence were also successfully performed. Mixture analysis demonstrated that a balanced profile can be obtained even at a male-to-female template ratio of 1:10. The successful development and operation of this portable PCR-CE system establishes the feasibility of rapid point-of-analysis DNA typing of forensic casework, of mass disaster samples or of individuals at a security checkpoint.
There is an urgent need for rapid, low-cost multiplex methodologies for the monitoring of genetically modified organisms (GMOs). Here, we report a C[combining low line]apillary A[combining low line]rray-based L[combining low line]oop-mediated isothermal amplification for M[combining low line]ultiplex visual detection of nucleic acids (CALM) platform for the simple and rapid monitoring of GMOs. In CALM, loop-mediated isothermal amplification (LAMP) primer sets are pre-fixed to the inner surface of capillaries. The surface of the capillary array is hydrophobic while the capillaries are hydrophilic, enabling the simultaneous loading and separation of the LAMP reaction mixtures into each capillary by capillary forces. LAMP reactions in the capillaries are then performed in parallel, and the results are visually detected by illumination with a hand-held UV device. Using CALM, we successfully detected seven frequently used transgenic genes/elements and five plant endogenous reference genes with high specificity and sensitivity. Moreover, we found that measurements of real-world blind samples by CALM are consistent with results obtained by independent real-time PCRs. Thus, with an ability to detect multiple nucleic acids in a single easy-to-operate test, we believe that CALM will become a widely applied technology in GMO monitoring.
Extracellular vesicles (EVs) play a significant role in the pathophysiological process of many diseases, highlighting their values in medical diagnosis and disease monitoring. However, the current EV isolation methods are time-consuming, inconvenient to operate, and incompatible with downstream analyses. Here, we present a novel isolation method employing anionic polysaccharide-modified filter papers for the isolation of EVs (AppiEV) via electrostatic adsorption. A disc of glass fiber-based filter modified with sodium alginate was assembled into a spin column to function as the solid capture phase. In the acidic condition, EVs were induced to carry more positively charged ions, which enable the capture of EVs by the negatively charged filter paper. After a wash, the EVs were released from the spin column using an alkaline elution buffer, which induces the EVs to carry more negative charges. The EVs isolated by AppiEV from cell culture supernatants, plasma, and urine are similar to or even better than those isolated by ultracentrifugation in terms of EV size distribution, protein distribution, and nucleic acid contents. Due to the interference removal of the EV-free RNA and DNA attributed to the negatively charged capture medium, the eluate of AppiEV could be directly used for genetic analysis, including the stem-loop RT-PCR analysis of miR-21 and the allele-specific PCR analysis of mutation genes of EGFR p.L858R and EGFR p.T790M. We believe that AppiEV offers a simple and efficient approach for the isolation of high-quality EVs from various liquid specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.