The high-voltage LiNi 0.5 Mn 1.5 O 4 (LNMO) spinel is a promising candidate for a positive electrode in lithium ion batteries, but LNMO/graphite full-cells display severe capacity fading issues due to Mn dissolution. In this study, the dissolution behaviors of Mn and Ni were examined systematically under various conditions such as state of charge (SOC), temperature, storage time, and crystal structure of LNMO. In addition, surfaces of calendar-or cycle-aged LNMO and graphite electrodes were analyzed by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), or time-of-flight secondary ion mass spectrometry (TOF-SIMS). The chemical composition of aged electrolyte was determined by gas chromatography (GC) analysis after storage of LNMO electrodes under different conditions. It was found that the amounts of dissolved Mn and Ni and diethyl ether, a decomposition product of diethyl carbonate (DEC) in electrolyte, increased with SOC, temperature, and storage time. The decomposition of electrolyte can be explained, in part, by the self-discharge behavior of LNMO, which promotes electrolyte oxidation. Additional HF is believed to be generated during the formation of diethyl ether (via dehydration reaction from EtOH, another decomposition product of DEC), which accelerates Mn and Ni dissolution from LNMO. In addition, various reaction products that form as a result of Mn and Ni dissolution, such as LiF, MnF 2 , NiF 2 , and polymerized organic species, were found on the surface of LNMO electrodes, which will increase battery-cell impedance.
The mechanism of Li(+) transport through the solid electrolyte interphase (SEI), a passivating film on electrode surfaces, has never been clearly elucidated despite its overwhelming importance to Li-ion battery operation and lifetime. The present paper develops a multiscale theoretical methodology to reveal the mechanism of Li(+) transport in a SEI film. The methodology incorporates the boundary conditions of the first direct diffusion measurements on a model SEI consisting of porous (outer) organic and dense (inner) inorganic layers (similar to typical SEI films). New experimental evidence confirms that the inner layer in the ∼20 nm thick model SEI is primarily crystalline Li(2)CO(3). Using density functional theory, we first determined that the dominant diffusion carrier in Li(2)CO(3) below the voltage range of SEI formation is excess interstitial Li(+). This diffuses via a knock-off mechanism to maintain higher O-coordination, rather than direct-hopping through empty spaces in the Li(2)CO(3) lattice. Mesoscale diffusion equations were then formulated upon a new two-layer/two-mechanism model: pore diffusion in the outer layer and knock-off diffusion in the inner layer. This diffusion model predicted the unusual isotope ratio (6)Li(+)/(7)Li(+) profile measured by TOF-SIMS, which increases from the SEI/electrolyte surface and peaks at a depth of 5 nm, and then gradually decreases within the dense layer. With no fitting parameters, our approach is applicable to model general transport properties, such as ionic conductivity, for SEI films on the surface of other electrodes, from the atomic scale to the mesoscale, as well as aging phenomenon.
Sensitivity is a crucial parameter for flexible pressure sensors and electronic skins. While introducing microstructures (e.g., micro-pyramids) can effectively improve the sensitivity, it in turn leads to a limited pressure-response range due to the poor structural compressibility. Here, we report a strategy of engineering intrafillable microstructures that can significantly boost the sensitivity while simultaneously broadening the pressure responding range. Such intrafillable microstructures feature undercuts and grooves that accommodate deformed surface microstructures, effectively enhancing the structural compressibility and the pressure-response range. The intrafillable iontronic sensor exhibits an unprecedentedly high sensitivity (Smin > 220 kPa−1) over a broad pressure regime (0.08 Pa-360 kPa), and an ultrahigh pressure resolution (18 Pa or 0.0056%) over the full pressure range, together with remarkable mechanical stability. The intrafillable structure is a general design expected to be applied to other types of sensors to achieve a broader pressure-response range and a higher sensitivity.
The solid electrolyte interphase (SEI), a passivation layer formed on electrodes, is critical to battery performance and durability. The inorganic components in SEI, including lithium carbonate (Li2CO3) and lithium fluoride (LiF), provide both mechanical and chemical protection, meanwhile control lithium ion transport. Although both Li2CO3 and LiF have relatively low ionic conductivity, we found, surprisingly, that the contact between Li2CO3 and LiF can promote space charge accumulation along their interfaces, which generates a higher ionic carrier concentration and significantly improves lithium ion transport and reduces electron leakage. The synergetic effect of the two inorganic components leads to high current efficiency and long cycle stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.