This study aimed to explore the ability of combination model of ultrasound radiomics score (Rad-score) and the thyroid imaging, reporting and data system by the American College of Radiology (ACR TI-RADS) in predicting benign and malignant thyroid nodules (TNs). Up to 286 radiomics features were extracted from ultrasound images of TNs. By using the lowest probability of classification error and average correlation coefficients (POE + ACC) and the least absolute shrinkage and selection operator (LASSO), we finally selected four features to establish Rad-score (Vertl-RLNonUni, Vertl-GLevNonU, WavEnLH-s4 and WavEnHL-s5). DeLong’s test and decision curve analysis (DCA) showed that the method of combining Rad-score and ACR TI-RADS had the best performance (the area under the receiver operating characteristic curve (AUC = 0.913 (95% confidence interval (CI), 0.881–0.939) and 0.899 (95%CI, 0.840–0.942) in the training group and verification group, respectively), followed by ACR TI-RADS (AUC = 0.898 (95%CI, 0.863–0.926) and 0.870 (95%CI, 0.806–0.919) in the training group and verification group, respectively), and followed by Rad-score (AUC = 0.750 (95%CI, 0.704–0.792) and 0.750 (95%CI, 0.672–0.817) in the training group and verification group, respectively). We concluded that the ability of ultrasound Rad-score to distinguish benign and malignant TNs was not as good as that of ACR TI-RADS, and the ability of the combination model of Rad-score and ACR TI-RADS to discriminate benign and malignant TNs was better than ACR TI-RADS or Rad-score alone. Ultrasound Rad-score might play a potential role in improving the differentiation of malignant TNs from benign TNs.
This study aimed to explore the feasibility of ultrasound radiomics analysis before invasive coronary angiography (ICA) for evaluating the severity of coronary artery disease (CAD) quantified by the SYNTAX score (SS). This study included 105 carotid plaques from 105 patients (64 low-SS patients, 41 intermediate-high-SS patients). The clinical characteristics and three-dimensional ultrasound (3D-US) features before ICA were assessed. Ultrasound images of carotid plaques were used for radiomics analysis. Least absolute shrinkage and selection operator (LASSO) regression, which generated several nonzero coefficients, was used to select features that could predict intermediate-high SS. Based on those coefficients, the radiomics score (Rad-score) was calculated. The selected clinical characteristics, 3D-US features, and Rad-score were finally integrated into a radiomics nomogram. Among the clinical characteristics and 3D-US features, high-density lipoprotein (HDL), apolipoprotein B (Apo B), and plaque volume were identified as predictors for distinguishing between low SS and intermediate-high SS. During the radiomics process, 8 optimal radiomics features most capable of identifying intermediate-high SS were selected from 851 candidate radiomics features. The differences in Rad-score between the training and the validation set were significant (p = 0.016 and 0.006). The radiomics nomogram integrating HDL, Apo B, plaque volume, and Rad-score showed excellent results in the training set (AUC, 0.741 (95% confidence interval (CI): 0.646–0.835)) and validation set (AUC, 0.939 (95% CI: 0.860–1.000)), with good calibration (mean absolute errors of 0.028 and 0.059 in training and validation sets, respectively). Decision curve analysis showed that the radiomics nomogram could identify patients who could obtain the most benefit. We concluded that the radiomics nomogram based on carotid plaque ultrasound has favorable value for the noninvasive prediction of intermediate-high SS. This radiomics nomogram has potential value for the risk stratification of CAD before ICA and provides clinicians with a noninvasive diagnostic tool.
Tyrosine kinase inhibitors (TKIs) are a significant treatment strategy for the management of non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutation status. Currently, EGFR mutation status is established based on tumor tissue acquired by biopsy or resection, so there is a compelling need to develop non-invasive, rapid, and accurate gene mutation detection methods. Non-invasive molecular imaging, such as positron emission tomography/computed tomography (PET/CT), has been widely applied to obtain the tumor molecular and genomic features for NSCLC treatment. Recent studies have shown that PET/CT can precisely quantify EGFR mutation status in NSCLC patients for precision therapy. This review article discusses PET/CT advances in predicting EGFR mutation status in NSCLC and their clinical usefulness.
Background: Identifying cervical lymph node metastasis (LNM) in primary thyroid cancer preoperatively using ultrasound is challenging. Therefore, a non-invasive method is needed to assess LNM accurately. Purpose: To address this need, we developed the Primary Thyroid Cancer Lymph Node Metastasis Assessment System (PTC-MAS), a transfer learning-based and B-mode ultrasound images-based automatic assessment system for assessing LNM in primary thyroid cancer. Methods: The system has two parts: YOLO Thyroid Nodule Recognition System (YOLOS) for obtaining regions of interest (ROIs) of nodules, and LMM assessment system for building the LNM assessment system using transfer learning and majority voting with extracted ROIs as input. We retained the relative size features of nodules to improve the system’s performance. Results: We evaluated three transfer learning-based neural networks (DenseNet, ResNet, and GoogLeNet) and majority voting, which had the area under the curves (AUCs) of 0.802, 0.837, 0.823, and 0.858, respectively. Method III preserved relative size features and achieved higher AUCs than Method II, which fixed nodule size. YOLOS achieved high precision and sensitivity on a test set, indicating its potential for ROIs extraction. Conclusions: Our proposed PTC-MAS system effectively assesses primary thyroid cancer LNM based on preserving nodule relative size features. It has potential for guiding treatment modalities and avoiding inaccurate ultrasound results due to tracheal interference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.