Driving behavior has a large impact on vehicle fuel consumption. Dedicated study on the relationship between the driving behavior and fuel consumption can contribute to decreasing the energy cost of transportation and the development of the behavior assessment technology for the ADAS system. Therefore, it is vital to evaluate this relationship in order to develop more ecological driving assistance systems and improve the vehicle fuel economy. However, modeling driving behavior under the dynamic driving conditions is complex, making a quantitative analysis of the relationship between the driving behavior and the fuel consumption difficult. In this paper, we introduce two kinds of machine learning methods for evaluating the fuel efficiency of driving behavior using the naturalistic driving data. In the first stage, we use an unsupervised spectral clustering algorithm to study the macroscopic relationship between driving behavior and fuel consumption, using the data collected during the natural driving process. In the second stage, the dynamic information from the driving environment and natural driving data is integrated to generate a model of the relationship between various driving behaviors and the corresponding fuel consumption features. The dynamic environment factors are coded into a processable, digital form using a deep learningbased object detection method so that the environmental data can be linked with the vehicle's operating signal data to provide the training data for the deep learning network. The training data are labeled according to its fuel consumption feature distribution, which is obtained from the road segment data and historical driving data. This deep learning-based model can then be used as a predictor of the fuel consumption associated with different driving behaviors. Our results show that the proposed method can effectively identify the relationship between the driving behavior and the fuel consumption on both macro and micro levels, allowing for end-to-end fuel consumption feature prediction, which can then be applied in the advanced driving assistance systems. INDEX TERMS Driving behavior modeling, data mining, deep learning, vehicle fuel economy.
An accurate and continuous measurement of blood pressure (BP) is of great importance for the prognosis of some cardiovascular diseases in out-of-hospital settings. Pulse transit time (PTT) is a well-known cardiovascular parameter which is highly correlated with BP and has been widely applied in the estimation of continuous BP. However, due to the complexity of cardiovascular system, the accuracy of PTT-based BP estimation is still unsatisfactory. Recent studies indicate that, for the subjects before and after exercise, PTT can track the high-frequency BP oscillation (HF-BP) well, but is inadequate to follow the low-frequency BP variance (LF-BP). Unfortunately, the cause for this failure of PTT in LF-BP estimation is still unclear. Based on these previous researches, we investigated the cause behind this failure of PTT in LF-BP estimation. The heart rate- (HR-) related arterial baroreflex (ABR) model was introduced to analyze the failure of PTT in LF-BP estimation. Data from 42 healthy volunteers before and after exercise were collected to evaluate the correlation between the ABR sensitivity and the estimation error of PTT-based BP in LF and HF components. In the correlation plot, an obvious difference was observed between the LF and HF groups. The correlation coefficient r for the ABR sensitivity with the estimation error of systolic BP (SBP) and diastolic BP (DBP) in LF was 0.817 ± 0.038 and 0.757 ± 0.069, respectively. However, those correlation coefficient r for the ABR sensitivity with the estimation error of SBP and DBP in HF was only 0.403 ± 0.145 and 0.274 ± 0.154, respectively. These results indicated that there is an ABR-related complex LF autonomic regulation mechanism on BP, PTT, and HR, which influences the effect of PTT in LF-BP estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.