In vivo neurochemical monitoring using microdialysis sampling is important in neuroscience because it allows correlation of neurotransmission with behavior, disease state, and drug concentrations in the intact brain. A significant limitation of current practice is that different assays are utilized for measuring each class of neurotransmitter. We present a high performance liquid chromatography (HPLC) - tandem mass spectrometry method that utilizes benzoyl chloride for determination of the most common low molecular weight neurotransmitters and metabolites. In this method, 17 analytes were separated in 8 minutes. The limit of detection was 0.03–0.2 nM for monoamine neurotransmitters, 0.05–11 nM for monoamine metabolites, 2–250 nM for amino acids, 0.5 nM for acetylcholine, 2 nM for histamine, and 25 nM for adenosine at sample volume of 5 µL. Relative standard deviation for repeated analysis at concentrations expected in vivo averaged 7% (n = 3). Commercially available 13C benzoyl chloride was used to generate isotope-labeled internal standards for improved quantification. To demonstrate utility of the method for study of small brain regions, the GABAA receptor antagonist bicuculline (50 µM) was infused into rat ventral tegmental area while recording neurotransmitter concentration locally and in nucleus accumbens, revealing complex GABAergic control over mesolimbic processes. To demonstrate high temporal resolution monitoring, samples were collected every 60 s while neostigmine, an acetylcholine esterase inhibitor, was infused into the medial prefrontal cortex. This experiment revealed selective positive control of acetylcholine over cortical glutamate.
BackgroundNAD+ is a coenzyme for hydride transfer enzymes and a substrate for sirtuins and other NAD+-dependent ADPribose transfer enzymes. In wild-type Saccharomyces cerevisiae, calorie restriction accomplished by glucose limitation extends replicative lifespan in a manner that depends on Sir2 and the NAD+ salvage enzymes, nicotinic acid phosphoribosyl transferase and nicotinamidase. Though alterations in the NAD+ to nicotinamide ratio and the NAD+ to NADH ratio are anticipated by models to account for the effects of calorie restriction, the nature of a putative change in NAD+ metabolism requires analytical definition and quantification of the key metabolites.ResultsHydrophilic interaction chromatography followed by tandem electrospray mass spectrometry were used to identify the 12 compounds that constitute the core NAD+ metabolome and 6 related nucleosides and nucleotides. Whereas yeast extract and nicotinic acid increase net NAD+ synthesis in a manner that can account for extended lifespan, glucose restriction does not alter NAD+ or nicotinamide levels in ways that would increase Sir2 activity.ConclusionsThe results constrain the possible mechanisms by which calorie restriction may regulate Sir2 and suggest that provision of vitamins and calorie restriction extend lifespan by different mechanisms.
Objectives
Long non‐coding RNAs (lncRNAs) have been demonstrated as crucial regulators in cancer, but whether they are involved in the immune response of cancer cells remains largely undiscovered. GATA3‐AS1 is a novel lncRNA that was upregulated in breast cancer (BC) according to online databases. However, its role in triple‐negative breast cancer (TNBC) was elusive.
Methods
GATA3‐AS1 expression in BC tissues and adjacent normal tissues was obtained from online databases. Loss‐of‐function assays were designed and conducted to verify the functional role of GATA3‐AS1 in TNBC cells. Bioinformatic analysis and mechanism experiments were applied to explore the downstream molecular mechanism of GATA3‐AS1. Similarly, the upstream mechanism which led to the upregulation of GATA3‐AS1 in TNBC cells was also investigated.
Results
GATA3‐AS1 was markedly overexpressed in TNBC tissues and cells. Knockdown of GATA3‐AS1 suppressed TNBC cell growth and enhanced the resistance of TNBC cells to immune response. GATA3‐AS1 induced the deubiquitination of PD‐L1 through miR‐676‐3p/COPS5 axis. GATA3‐AS1 destabilized GATA3 protein by promoting GATA3 ubiquitination.
Conclusion
GATA3‐AS1 contributed to TNBC progression and immune evasion through stabilizing PD‐L1 protein and degrading GATA3 protein, offering a new target for the treatment of TNBC.
Developing sensors for in vivo chemical monitoring is a daunting challenge. An alternative approach is to couple sampling methods with online analytical techniques; however, such approaches are generally hampered by lower temporal resolution and slow analysis. In this work, microdialysis sampling was coupled with segmented flow electrospray ionization mass spectrometry (ESI-MS) to perform in vivo chemical monitoring. Use of segmented flow to prevent Taylor dispersion of collected zones and rapid analysis with direct ESI-MS allowed 5 s temporal resolution to be achieved. The MS “sensor” was applied to monitoring acetylcholine in the brain of live rats. The detection limit of 5 nM was sufficient to monitor basal acetylcholine as well as dynamic changes elicited by microinjection of neostigmine, an inhibitor of acetycholinesterase that evoked rapid increases in acetycholine, and tetrodotoxin, a blocker of Na+ channels, that lowered the acetylcholine concentration. The versatility of the sensor was demonstrated by simultaneously monitoring metabolites and infused drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.