This study investigated the relationship between acyl homoserine lactones (AHLs)based quorum sensing (QS) and the properties of Anammox granular sludge at low temperatures (11-23°C). Results indicated that adding different concentrations of AHLs inhibitors reduced the content of N-hexanoyl-dl-homoserine lactone (C6-HSL) and N-octanoyl-dl-homoserinelactone (C8-HSL) in Anammox granules on different degrees at different operation temperatures, which led to the deterioration of granules stability and activity. The important role of endogenous C6-HSL and C8-HSL signals in maintaining Anammox granular sludge stability and activity in low-temperature conditions was revealed. In addition, in the process of reducing operation temperatures, another type of AHL signal (N-(3-oxooctanoyl)-l-homoserine lactone, 3OC8-HSL) was released by Anammox granules. The effects of exogenous C8-HSL on the strength, average diameter, and density of Anammox granules were closely related to the operation temperature. When the operation temperature ranged from 11°C to 16°C, the stability of granules could be significantly improved by exogenous C8-HSL. In addition, the addition of C6-HSL and 3OC8-HSL promoted the activity of Anammox granules when the operation temperatures of the reactors were 11-23°C. This study proposed a novel approach to improve the properties of Anammox granules at low temperatures from the perspective of QS. • Practitioner points• Endogenous AHLs played an important role in maintaining the activity and stability of Anammox granules at 11-23°C. • Exogenous C8-HSL improved the granules stability at the low temperature of 11-16°C. • Exogenous C6-HSL or 3OC8-HSL promoted the granules activity at 11-23°C.• Supply a novel way to improve the Anammox granules performance at low temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.