This paper presents a generalized model for wind turbine (WT) anomaly identification based on the data collected from wind farm supervisory control and data acquisition (SCADA) system. Neural networks (NNs) are used to establish prediction models of the WT condition parameters that are dependent on environmental conditions such as ambient temperature and wind speed. Input parameters of the prediction models are selected based on the domain knowledge. Three types of sample data, namely the WT's current SCADA data, the WT's historical SCADA data, and other similar WTs' current SCADA data, are used to train the condition parameter prediction models. Prediction accuracy of the models trained by these sample data is compared and discussed in the paper. Mean absolute error (MAE) index is used to select the prediction models trained by historical and other similar WTs' current SCADA data. Abnormal level index (ALI) is defined to quantify the abnormal level of prediction error of each selected model. To improve the accuracy of anomaly identification, a fuzzy synthetic evaluation method is used to integrate the identification results obtained from the different selected models. The proposed method has been used for real 1.5 MW WTs with doubly fed induction generators. The results show that the proposed method is more effective in WT anomaly identification than traditional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.