In this paper, a derivative-free affine scaling linear programming algorithm based on probabilistic models is considered for solving linear inequality constrainted optimization problems. The proposed algorithm is designed to build probabilistic linear polynomial interpolation models using only n + 1 interpolation points for the objective function and reduce the computation cost for building interpolation function. We build the affine scaling linear programming methods which use probabilistic or random models and affine matrix within a classical linear programming framework. The backtracking line search technique can guarantee monotone descent of the objective function, and by using this technique, the new iterative points are located within the feasible region. Under some reasonable conditions, the global and local fast convergence of the algorithm is shown, and the results of numerical experiments are reported to show the effectiveness of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.