This paper investigates the multi-rate inertial and vision data fusion problem in nonlinear attitude measurement systems, where the sampling rate of the inertial sensor is much faster than that of the vision sensor. To fully exploit the high frequency inertial data and obtain favorable fusion results, a multi-rate CKF (Cubature Kalman Filter) algorithm with estimated residual compensation is proposed in order to adapt to the problem of sampling rate discrepancy. During inter-sampling of slow observation data, observation noise can be regarded as infinite. The Kalman gain is unknown and approaches zero. The residual is also unknown. Therefore, the filter estimated state cannot be compensated. To obtain compensation at these moments, state error and residual formulas are modified when compared with the observation data available moments. Self-propagation equation of the state error is established to propagate the quantity from the moments with observation to the moments without observation. Besides, a multiplicative adjustment factor is introduced as Kalman gain, which acts on the residual. Then the filter estimated state can be compensated even when there are no visual observation data. The proposed method is tested and verified in a practical setup. Compared with multi-rate CKF without residual compensation and single-rate CKF, a significant improvement is obtained on attitude measurement by using the proposed multi-rate CKF with inter-sampling residual compensation. The experiment results with superior precision and reliability show the effectiveness of the proposed method.
The existing dynamic path planning algorithm cannot properly solve the problem of the path planning of wheeled robot on the slope ground with dynamic moving obstacles. To solve the problem of slow convergence rate in the training phase of DDQN, the dynamic path planning algorithm based on Tree-Double Deep Q Network (TDDQN) is proposed. The algorithm discards detected incomplete and over-detected paths by optimizing the tree structure, and combines the DDQN method with the tree structure method. Firstly, DDQN algorithm is used to select the best action in the current state after performing fewer actions, so as to obtain the candidate path that meets the conditions. And then, according to the obtained state, the above process is repeatedly executed to form multiple paths of the tree structure. Finally, the non-maximum suppression method is used to select the best path from the plurality of eligible candidate paths. ROS simulation and experiment verify that the wheeled robot can reach the target effectively on the slope ground with moving obstacles. The results show that compared with DDQN algorithm, TDDQN has the advantages of fast convergence and low loss function.
This paper presents a joint state and parameter estimation method for aircraft engine performance degradation tracking. Contrast to previously reported techniques on state estimation that view parameters in the state evolution model as constants, the method presented in this paper treats parameters as time-varying variables to account for varying degradation rates at different stages of engine operation. Transition of degradation stages and estimation of parameters are performed by particle filtering (PF) under the Bayesian inference framework. To address the sample impoverishment problem due to discrete resampling, which is inherent to PF, a continuous resampling strategy has been proposed, with the goal to improve estimation accuracy of PF. The algorithm has shown to be able to detect abrupt fault inception based on the residuals between the estimated results from the state evolution model and actual measurements. The developed technique is evaluated using data generated from a turbofan engine model. Simulation of engine output parameters over a series of flights with both nominal degradation and abrupt fault types has been conducted, and error within 1% for performance tracking and degradation prediction has been shown. This demonstrates the effectiveness of the developed technique in fault detection and degradation tracking in aircraft engines.
Summary In this article, the problems of dissipativity analysis and dissipative control are investigated for positive switched linear systems in both continuous and discrete‐time domains. We aim at solving the problems via employing a multiple linear copositive storage function scheme. The solvability of the problems for individual subsystem is only on their active regions. Switching laws and a set of feedback controllers are jointly devised such that the associated closed‐loop switched systems are not only positive but also dissipative, which is from the exogenous input to the output. Asymptotic stability is derived if all subsystems are zero‐state detectable. Moreover, sufficient conditions guaranteeing dissipativity with positivity constraint are presented, which can be easily examined on the grounds of linear programming approach. Finally, an example is offered, illustrating that the proposed control strategy is successful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.