The q‐rung orthopair fuzzy sets (q‐ROFs) are an important way to express uncertain information, and they are superior to the intuitionistic fuzzy sets and the Pythagorean fuzzy sets. Their eminent characteristic is that the sum of the qth power of the membership degree and the qth power of the degrees of non‐membership is equal to or less than 1, so the space of uncertain information they can describe is broader. Under these environments, we propose the q‐rung orthopair fuzzy weighted averaging operator and the q‐rung orthopair fuzzy weighted geometric operator to deal with the decision information, and their some properties are well proved. Further, based on these operators, we presented two new methods to deal with the multi‐attribute decision making problems under the fuzzy environment. Finally, we used some practical examples to illustrate the validity and superiority of the proposed method by comparing with other existing methods.
Linguistic intuitionistic fuzzy numbers (LIFNs) is a new concept in describing the intuitionistic fuzzy information, which membership and non-membership are expressed by linguistic terms, so it can more easily express the fuzzy information, and some research results on LIFNs have been achieved. However, in the existing researches, some linguistic intuitionistic fuzzy aggregation operators are based on the traditional operational rules, and they have some drawbacks for multi-attribute decision making (MADM) in the practical application. In order to overcome these problems, in this paper, we proposed some improved operational rules based on LIFNs and verified their some properties. Then we developed some aggregation operators to fuse the decision information represented by LIFNs, including the improved linguistic intuitionistic fuzzy weighted averaging (ILIFWA) operator and the improved linguistic intuitionistic fuzzy weighted power average (ILIFWPA) operator. Further, we proved their some desirable properties. Based on the ILIFWA operator and the ILIFWPA operator, we presented some new methods to deal with the multi-attribute group decision making (MAGDM) problems under the linguistic intuitionistic fuzzy environment. Finally, we used some practical examples to illustrate the validity and feasibility of the proposed methods by comparing with other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.