Point cloud is a widely used 3D data form, which can be produced by depth sensors, such as Light Detection and Ranging (LIDAR) and RGB-D cameras. Being unordered and irregular, many researchers focused on the feature engineering of the point cloud. Being able to learn complex hierarchical structures, deep learning has achieved great success with images from cameras. Recently, many researchers have adapted it into the applications of the point cloud. In this paper, the recent existing point cloud feature learning methods are classified as point-based and tree-based. The former directly takes the raw point cloud as the input for deep learning. The latter first employs a k-dimensional tree (Kd-tree) structure to represent the point cloud with a regular representation and then feeds these representations into deep learning models. Their advantages and disadvantages are analyzed. The applications related to point cloud feature learning, including 3D object classification, semantic segmentation, and 3D object detection, are introduced, and the datasets and evaluation metrics are also collected. Finally, the future research trend is predicted.
Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-bylayer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierarchical representations, which are suitable for fault classification, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.
Micro-channel cooling shows great potential in removing high density heat in 3D circuits. The current micro-channel heat sink designs spread the entire surface to be cooled with micro-channels. This approach, though might provide sufficient cooling, requires quite high pumping power. In this paper, we investigate the non-uniform allocation of micro-channels to provide sufficient cooling with less pumping power. Specifically, we decide the count, location and pumping pressure drop/flow rate of micro-channels such that acceptable cooling is achieved at minimum pumping power. Thermal wake effect and runtime pressure drop/flow rate control are also considered. The experiments showed that, compared with the conventional design which spreads micro-channels all over the chip, our non-uniform microchannel design achieves 55-60% pumping power saving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.