In order to confirm 14-3-3 sigma (sigma) protein distribution in human tissues, immunohistochemistry was performed using various paraffin-embedded human tissues. In normal human tissues, the strongest immunoreactivity for 14-3-3sigma protein was observed in squamous epithelia at various sites, followed by basal cells of the trachea, bronchus and basal or myoepithelial cells of various glands. Moderate to weak 14-3-3sigma immunoreactivity was seen in the epithelial cells of the alimentary tract, gall bladder, urinary tract and endometrium. In the lung, 14-3-3sigma immunoreactivity was also observed in hyperplastic type II alveolar cells and metaplastic squamous cells. Immunohistochemical study using non-small-cell lung cancers revealed that 14-3-3sigma immunoreactivity was stronger in squamous cell carcinomas than in adenocarcinomas. The present study revealed that 14-3-3sigma expression was exclusively present in various epithelial cells and had a tendency to be stronger in cells destined for squamous epithelium or differentiating toward squamous cells in human normal and neoplastic cells.
14-3-3 sigma (sigma) has been a major G2/M checkpoint control gene and has demonstrated that its inactivation in various cancers occurs mostly by epigenetic hypermethylation, not by genetic change. In order to confirm 14-3-3sigma protein expression together with p16 and p53 in cervical cancers, immunohistochemistry was performed using various histological subtypes of cervical cancers and dysplasia. Strong and diffuse immunoreactivity for 14-3-3sigma was uniformly observed in all the cervical dysplasia (17/17) and squamous cell carcinomas (29/29) including human papillomavirus (HPV)-negative cases. Even in adenosquamous carcinomas and adenocarcinomas of the cervix, immunohistochemical expression of 14-3-3sigma was shown with relatively high frequency (13/15, 87% and 22/27, 81%). In the in situ hybridization study, mRNA of 14-3-3sigma was expressed in six of eight immunohistochemical-negative cases. Therefore, the undetectable expression of 14-3-3sigma protein in cervical cancers might, at least in part, be due to a proteolysis not epigenetic hypermethylation. It is of interest that cancers without 14-3-3sigma expression were predominantly those lacking HPV DNA, and that there were no cases with concomitant inactivation of 14-3-3sigma and p16 in the present study. These observations are consistent with the hypothesis that inactivation of either 14-3-3sigma or p16 has an effect equivalent to the expression of E6 and E7 oncoproteins of HPV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.