The existing sleep stages classification methods are mainly based on time or frequency features. This paper classifies the sleep stages based on graph domain features from a single-channel electroencephalogram (EEG) signal. First, each epoch (30 s) EEG signal is mapped into a visibility graph (VG) and a horizontal VG (HVG). Second, a difference VG (DVG) is obtained by subtracting the edges set of the HVG from the edges set of the VG to extract essential degree sequences and to detect the gait-related movement artifact recordings. The mean degrees (MDs) and degree distributions (DDs) P (k) on HVGs and DVGs are analyzed epoch-by-epoch from 14,963 segments of EEG signals. Then, the MDs of each DVG and HVG and seven distinguishable DD values of P (k) from each DVG are extracted. Finally, nine extracted features are forwarded to a support vector machine to classify the sleep stages into two, three, four, five, and six states. The accuracy and kappa coefficients of six-state classification are 87.5% and 0.81, respectively. It was found that the MDs of the VGs on the deep sleep stage are higher than those on the awake and light sleep stages, and the MDs of the HVGs are just the reverse.
The electroencephalogram (EEG) signals are commonly used in diagnosing and treating sleep disorders. Many existing methods for sleep stages classification mainly depend on the analysis of EEG signals in time or frequency domain to obtain a high classification accuracy. In this paper, the statistical features in time domain, the structural graph similarity and the K-means (SGSKM) are combined to identify six sleep stages using single channel EEG signals. Firstly, each EEG segment is partitioned into sub-segments. The size of a sub-segment is determined empirically. Secondly, statistical features are extracted, sorted into different sets of features and forwarded to the SGSKM to classify EEG sleep stages. We have also investigated the relationships between sleep stages and the time domain features of the EEG data used in this paper. The experimental results show that the proposed method yields better classification results than other four existing methods and the support vector machine (SVM) classifier. A 95.93% average classification accuracy is achieved by using the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.