In this paper, the distributed resource allocation optimization problem is investigated. The allocation decisions are made to minimize the sum of all the agents' local objective functions while satisfying both the global network resource constraint and the local allocation feasibility constraints. Here the data corresponding to each agent in this separable optimization problem, such as the network resources, the local allocation feasibility constraint, and the local objective function, is only accessible to individual agent and cannot be shared with others, which renders new challenges in this distributed optimization problem. Based on either projection or differentiated projection, two classes of continuous-time algorithms are proposed to solve this distributed optimization problem in an initialization-free and scalable manner. Thus, no re-initialization is required even if the operation environment or network configuration is changed, making it possible to achieve a "plug-and-play" optimal operation of networked heterogeneous agents. The algorithm convergence is guaranteed for strictly convex objective functions, and the exponential convergence is proved for strongly convex functions without local constraints. Then the proposed algorithm is applied to the distributed economic dispatch problem in power grids, to demonstrate how it can achieve the global optimum in a scalable way, even when the generation cost, or system load, or network configuration, is changing.
In this paper, we study a distributed continuous-time design for aggregative games with coupled constraints in order to seek the generalized Nash equilibrium by a group of agents via simple local information exchange. To solve the problem, we propose a distributed algorithm based on projected dynamics and non-smooth tracking dynamics, even for the case when the interaction topology of the multi-agent network is time-varying. Moreover, we prove the convergence of the non-smooth algorithm for the distributed game by taking advantage of its special structure and also combining the techniques of the variational inequality and Lyapunov function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.