Two unsymmetrical oxovanadium complexes incorporating salicylaldehyde derivate and phenanthroline [VO(DESAA)(phen)] (1), (DESAA = 4-(diethylamino)salicylaldehyde anthranilic acid, phen = phenanthroline) and [VO(CLSAA)(phen)] (2), (CLSAA = 5-chlorosalicylaldehyde anthranilic acid)] have been synthesized and characterized. The interactions of the complexes with CT-DNA were studied using different techniques. Complexes 1 and 2 interact with CT-DNA by intercalative modes and can efficiently cleave pBR322 DNA after light irradiation. The two complexes showed high cytotoxic activities against myeloma cell (Ag8.653) and gliomas cell (U251) lines. Interestingly, complex 1 exhibited greater antitumor efficiency, larger binding affinity with CT-DNA, and better cleaving ability than those of complex 2. In addition, their antitumor mechanism has been analyzed by using cell cycle analysis, apoptosis, and Annexin V-FITC/PI assay. The results showed that complex 1 can cause G2/M-phase arrest of the cell cycle, exhibit a significantly induced apoptosis in Ag8.653 cells, and display typical morphological apoptotic characteristics. These complexes induced proliferative suppression of Ag8.653 cells via the induction of apoptosis.
Four novel oxovanadium(IV) complexes—[VO(PAHN)(phen)] (1; PAHN is 4-pyridinecarboxylic acid, 2-[(2-hydroxy)-1-naphthalenylene] hydrazide, phen is 1,10-phenanthroline), [VO(PAHN)(bpy)] (2; bpy is 2,2′-bipyridine), [VO(PAH)(phen)] (3; PAH is 4-pyridinecarboxylic acid, 2-[(2-hydroxy)-1-phenyl]methylene hydrazide), and [VO(PAH)(bpy)] (4)—have been synthesized and characterized by elemental analysis, UV–vis spectroscopy, electrospray ionization mass spectrometry, IR spectroscopy, 1H-NMR spectroscopy, and 13C-NMR spectroscopy. Their interactions with calf thymus DNA were investigated. The results suggest that these complexes bind to DNA in an intercalative mode. All four complexes exhibited highly cytotoxic activity against tumor cells (SH-SY5Y, MCF-7, and SK-N-SH), with 50 % inhibitory concentrations of the same order of magnitude as for cisplatin or of lower order of magnitude. Complex 1 exhibited the highest interaction ability and was found to be the most potent antitumor agent among the four complexes. It can cause G2/M phase arrest of the cell cycle, induces significant apoptosis in SK-N-SH cells, and displays typical morphological apoptotic characteristics. In addition, their hydroxyl radical scavenging properties have been tested, and complex 1 was the best inhibitor.
Four novel oxidovanadium(IV) complexes, [VO(hntdtsc)(PHIP)] (1) (hntdtsc = 2-hydroxy-1-naphthaldehyde thiosemicarbazone, PHIP= 2-phenyl-imidazo[4,5-f]1,10-phenanthroline), [VO(hntdtsc)(DPPZ)](2)(DPPZ= dipyrido[3,2-a:2',3'-c]phenazine), [VO(satsc)(PHIP)](3) (satsc=salicylaldehyde thiosemicarbazone), and [VO(satsc)(DPPZ)](4), have been prepared and characterized. The chemical nuclease activities and photocleavage reactions of the complexes were tested. All four complexes can efficiently cleave pBR322 DNA, and complex 1 has the best cleaving ability. The antitumor properties of these complexes were examined with three different tumor cell lines using MTT assay. Their antitumor mechanism has been analyzed using cell cycle analysis, fluorescence microscopy of apoptosis, and Annexin V-FITC/PI assay. The results showed that the growth of human neuroblastoma (SH-SY5Y, SK-N-SH) and human breast adenocarcinoma (MCF-7) cells were inhibited significantly with very low IC50 values. Complex 1 was found to be the most potent antitumor agent among the four complexes. It can cause G0/G1 phase arrest of the cell cycle and exhibited significant induced apoptosis in SK-N-SH cells and displayed typical morphological apoptotic characteristics. In addition, they all displayed reasonable abilities to scavenge hydroxyl radical, and complex 1 was the best inhibitor.
Solid solution formation is a common and effective way to reduce the lattice thermal conductivity for thermoelectric materials because of additional phonon scattering by point defects and grain boundaries. In the present work we prepared In2Te3–SnTe compounds using a mild solidification technique and evaluated their thermoelectric properties in the temperature range from 318705 K. Measurements reveal that the transport properties are strongly dependent on the chemical composition In2Te3 content, and lattice thermal conductivity significantly reduces above a minimum In2Te3 concentration, which can possibly be explained by an introduction of the vacancy on the indium sublattice and periodical vacancy planes. The highest thermoelectric figure of merit ZT of 0.19 can be achieved at 705 K, and a big improvement of In2Te3 based alloys would be expected if a proper optimization to the chemical compositions and structures were made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.