Layered metal-organic frameworks would be a diverse source of crystalline sheets with nanometer thickness for molecular sieving if they could be exfoliated, but there is a challenge in retaining the morphological and structural integrity. We report the preparation of 1-nanometer-thick sheets with large lateral area and high crystallinity from layered MOFs. They are used as building blocks for ultrathin molecular sieve membranes, which achieve hydrogen gas (H2) permeance of up to several thousand gas permeation units (GPUs) with H2/CO2 selectivity greater than 200. We found an unusual proportional relationship between H2 permeance and H2 selectivity for the membranes, and achieved a simultaneous increase in both permeance and selectivity by suppressing lamellar stacking of the nanosheets.
Surface modification of natural halloysite clay nanotubes with γ-aminopropyltriethoxysilane (APTES) was investigated. Untreated and modified samples were characterized by nitrogen adsorption, X-ray diffraction, elemental analysis, thermogravimetry, transmission electron microscopy, atomic force microscopy, MAS nuclear magnetic resonance (29Si, 13C, 29Al), and Fourier transform infrared spectroscopy. The modification mechanism was found to include not only the direct grafting of APTES onto the hydroxyl groups of the internal walls, edges and external surfaces of the nanotubes but other processes in which oligomerized APTES condensed with the directly grafted APTES to form a cross-linked structure. The thermal and evacuation pretreatment conditions were found to play an important role in controlling the extent and mechanism of the modification. The extent of modification is also strongly affected by the morphological parameters of the original clay samples. This study demonstrates that the surface chemistry of halloysite nanotubes is readily modified, enabling applications in nanocomposites, enzyme immobilization and controlled release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.