Wearable exoskeletons play an important role in people’s lives, such as helping stroke and amputation patients to carry out rehabilitation training and so on. How to make the exoskeleton accurately judge the human action intention is the basic requirement to ensure that it can complete the corresponding task. Traditional exoskeleton control signals include pressure values, joint angles and acceleration values, which can only reflect the current motion information of the human lower limbs and cannot be used to predict motion. The electromyography (EMG) signal always occurs before a certain movement; it can be used to predict the target’s gait speed and movement as the input signal. In this study, the generalization ability of a BP neural network and the timing property of a hidden Markov chain are used to properly fuse the two, and are finally used in the research of this paper. Experiments show that, using the same training samples, the recognition accuracy of the three-layer BP neural network is only 91%, while the recognition accuracy of the fusion discriminant model proposed in this paper can reach 95.1%. The results show that the fusion of BP neural network and hidden Markov chain has a strong solving ability for the task of wearable exoskeleton recognition of target step speed.
Unmanned aerial vehicle (UAV) swarm coordinated confrontation is a hot topic in academic research at home and abroad, and dynamic maneuver decision-making is one of the most important research fields for UAV countermeasures. Aiming at the complexity, uncertainty and confrontation of UAV cooperative confrontation, concepts such as relative advantage degree and advantage coefficient are introduced, and game theory is used as a framework to construct a dynamic non-zero-sum game UAV cluster cooperative confrontation decision-making model, and finally convert it into an optimization problem. On this basis, using the Nash equilibrium solution method of multi-strategy fusion particle swarm algorithm, by introducing adaptive inertia weight and local mutation strategy, while enhancing the diversity of the population, it can ensure the local accurate search ability of the particle swarm. The simulation results of the example are verified. The effectiveness of the proposed model and method is confirmed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.