The color changes corresponding to chromophore structures in lignin caused by exposure of Eucalyptus (Eucalyptus grandis and E. urophylla) to heat were investigated. Eucalyptus wood powders were heat treated under saturated steam atmospheres for 10 h at 110 °C, 130 °C and 150 °C. The lignin was isolated before and after heat treatment. The physicochemical properties of the lignin and changes in chromophore structures during heat treatment was evaluated through wet chemical analysis, Fourier transform infrared spectroscopy (FTIR), diffuse reflectance ultraviolet-visible spectroscopy (DRUV-Vis), gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS) and 13C Cross polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR). Wood color darkened and reddened with the increase in pressure and temperature. Depolymerization and dehydration reactions occurred via demethoxylation with heat treatment in saturated steam at 110 °C or 130 °C. Lignin condensed to form insoluble compounds after heat treatment in saturated steam at 150 °C. G units increased and S units decreased through demethylation during heat treatment, as revealed by FTIR and 13C-NMR analysis.
Chromophore structures in wood are the core elements for regulating wood color. Thermal treatment can regulate the color of wood, thus increasing its added value. In this study, conventional thermal treatment was used to regulate the color of Eucalyptus, in order to make its color close to the precious wood species Burma padauk. The color change in Eucalyptus wood was analyzed using the chromaticity index and UV–Vis. The chromophore structures in the treated wood and their discoloration mechanisms were characterized via FTIR, XPS, NMR, etc. The results showed that the color of eucalyptus could be regulated via thermal treatment to become more similar to the color of Burma padauk under both saturated steam and hot air. The treated wood showed a color difference in the 400~500 nm region in spectral absorption. The changes in the chromophore structures of wood were accompanied by the degradation of hemicelluloses. Meanwhile, demethoxylation occurred in the syringyl structure G of lignin, which led to the polymerization of lignin and decreased the lightness value of wood. Moreover, the number of conjugated structures in the chromophore groups increased, which caused the color of the wood to tend toward red. This study provides a reference for the color regulation of wood, and the mechanisms are also discussed.
The purpose of the experiment is to get more ideal color and raise the value of Locust wood after heat treatment. We chose ethanol as the solvent and heated locust wood in vapor environment at 120°C for 24 hours. Compare the infrared absorption spectrum of heat treated powder and heat treated powder after extracted. It turned out that: (1) extraction could wipe out the great mass of substance with ethenyl(C=C), ether bond(C-O-C), hydroxy (-OH) and aromatic ring; (2) The synthetic reaction and decomposition reaction of ethenyl(C=C), ether bond(C-O-C), hydroxy (-OH) and aromatic ring would lead to decrease of b* and rise of a*, but have no impact on L*;(3) Heat treatment would reduce the number of aromatic nucleus. Hydroxyl would be oxidized to carbonyl group. Instauration organic esters produced. Heat treated wood after extracted wouldn’t occur these reaction. Powder’s infrared absorption spectrum also shows that functional group in aromatic ring has decreased after extraction and heat treated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.