Major depressive disorder (MDD) is the result of complex gene-environment interactions. According to the World Health Organization, MDD is the leading cause of disability worldwide, and it is a major contributor to the overall global burden of disease. However, the definitive environmental mechanisms underlying the pathophysiology of MDD remain elusive. The gut microbiome is an increasingly recognized environmental factor that can shape the brain through the microbiota-gut-brain axis. We show here that the absence of gut microbiota in germ-free (GF) mice resulted in decreased immobility time in the forced swimming test relative to conventionally raised healthy control mice. Moreover, from clinical sampling, the gut microbiotic compositions of MDD patients and healthy controls were significantly different with MDD patients characterized by significant changes in the relative abundance of Firmicutes, Actinobacteria and Bacteroidetes. Fecal microbiota transplantation of GF mice with 'depression microbiota' derived from MDD patients resulted in depression-like behaviors compared with colonization with 'healthy microbiota' derived from healthy control individuals. Mice harboring 'depression microbiota' primarily exhibited disturbances of microbial genes and host metabolites involved in carbohydrate and amino acid metabolism. This study demonstrates that dysbiosis of the gut microbiome may have a causal role in the development of depressive-like behaviors, in a pathway that is mediated through the host's metabolism.
Previous studies suggest that gut microbiota is associated with neuropsychiatric disorders, such as Parkinson's disease, amyotrophic lateral sclerosis, and depression. However, whether the composition and diversity of gut microbiota is altered in patients with Alzheimer's disease (AD) remains largely unknown. In the present study, we collected fecal samples from 43 AD patients and 43 age- and gender-matched cognitively normal controls. 16S ribosomal RNA sequencing technique was used to analyze the microbiota composition in feces. The composition of gut microbiota was different between the two groups. Several bacteria taxa in AD patients were different from those in controls at taxonomic levels, such as Bacteroides, Actinobacteria, Ruminococcus, Lachnospiraceae, and Selenomonadales. Our findings suggest that gut microbiota is altered in AD patients and may be involved in the pathogenesis of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.