Modern object detectors have taken the advantages of pre-trained vision transformers by using them as backbone networks. However, except for the backbone networks, other detector components, such as the detector head and the feature pyramid network, remain randomly initialized, which hinders the consistency between detectors and pre-trained models. In this study, we propose to integrally migrate the pre-trained transformer encoder-decoders (imTED) for object detection, constructing a feature extraction-operation path that is not only "fully pre-trained" but also consistent with pre-trained models. The essential improvements of imTED over existing transformer-based detectors are twofold: (1) it embeds the pre-trained transformer decoder to the detector head; and (2) it removes the feature pyramid network from the feature extraction path. Such improvements significantly reduce the proportion of randomly initialized parameters and enhance the generation capability of detectors. Experiments on MS COCO dataset demonstrate that imTED consistently outperforms its counterparts by ∼2.8% AP. Without bells and whistles, imTED improves the state-of-the-art of few-shot object detection by up to 7.6% AP, demonstrating significantly higher generalization capability. Code will be made publicly available.Recently, ViTs [3] have been promising representation models. In terms of representation generalization, vanilla ViTs pre-trained with the masked auto-encoder (MAE) [7] demonstrates superiority * Equal Contribution.
A big convergence of model architectures across language, vision, speech, and multimodal is emerging. However, under the same name "Transformers", the above areas use different implementations for better performance, e.g., Post-LayerNorm for BERT, and Pre-LayerNorm for GPT and vision Transformers. We call for the development of Foundation Transformer for true general-purpose modeling, which serves as a go-to architecture for various tasks and modalities with guaranteed training stability. In this work, we introduce a Transformer variant, named MAGNETO, to fulfill the goal. Specifically, we propose Sub-LayerNorm for * Equal contribution. † Corresponding author.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.