To investigate the role of circKDM4C in acute myeloid leukemia (AML), the expression of circKDM4C, hsa‐let‐7b‐5p, and P53 was measured by qRT‐RCR. AML cell lines(K‐562 and HL‐60) were transfected correspondingly and investigated for cell proliferation, migration, and invasion abilities by CCK‐8, colony formation, transwell, and wound healing assays, respectively. The levels of P53, ACSL4, PTGS2, GPX4, and FTH1 in the K‐562, and HL‐60 cells were measured by western blotting. Also, circKDM4C mediated regulation of ferroptosis was studied. The Phen Green SK probe and confocal laser scanning microscope were used to assess the cellular iron levels. The reactive oxygen species levels were analyzed by fluorescence‐activated cell sorting using the C11‐BODIPY probe. Bioinformatics analysis predicted the putative binding sites among circKDM4C, hsa‐let‐7b‐5p, and P53. These were verified using the dual‐luciferase reporter assay, RNA pull‐down, and RNA immunoprecipitation assays. Finally, in vitro findings were also verified in vivo using the nude mice. CircKDM4C was significantly down‐regulated in AML patients. The overexpression of circKDM4C in AML cell lines inhibited the cell proliferation, migration, invasion, and promoted ferroptosis. We found that circKDM4C acts as a sponge of hsa‐let‐7b‐5p and thereby regulates p53 which is a target gene of hsa‐let‐7b‐5p. Also, the expression of circKDM4C and hsa‐let‐7b‐5p are negatively correlated, while circKDM4C and p53 are positively correlated to AML patients. Moreover, we found that circKDM4C induces ferroptosis by sponging hsa‐let‐7b‐5p which upregulates the expression of P53. This work emphasizes the role of circKDM4C in AML patients, which could be explored for the therapeutic role.
Terminal erythroid differentiation in mammals is the process whereby nucleated precursor cells accumulate erythroid-specific proteins such as hemoglobin, undergo extensive cellular and nuclear remodeling, and ultimately shed their nuclei to form reticulocytes, which then become mature erythrocytes in the circulation. Little is known about the mechanisms that enable erythroblasts to undergo such a transformation. We hypothesized that genes involved in these mechanisms were likely expressed at restricted times during the differentiation process and used differential display reverse transcriptase polymerase chain reaction as a first step in identifying such genes. We identified three differentially expressed cDNAs that we termed late erythroblast (LEB) 1-3. None of these cDNAs were previously identified as being expressed in erythroblasts and their patterns of expression indicated they are likely to be involved in the differentiation process. LEB-1 cDNA was derived from the gene A330102K04Rik (approved gene symbol Apoll1), and shares homology with members of the apolipoprotein L family in humans. LEB-3 cDNA was derived from the novel gene D930015E06Rik, that has no known function. LEB-2 cDNA was derived from the gene ranBP16 (approved gene symbol Xpo7), a nuclear exportin. D930015E06Rik mRNA is also strongly expressed in the testis and was localized to a region of the seminiferous tubule where secondary spermatocytes and early spermatids are found, suggesting a role for D930015E06Rik in spermatogenesis as well as terminal erythroid differentiation. We have thus identified three genes not previously described as being expressed in erythroblasts that could be relevant in elucidating mechanisms involved in terminal erythroid differentiation.
To explore the function of transcription factor 3 (TCF3) on the proliferation and apoptosis of Burkitt lymphoma cells and its mechanism. qRT-PCR was performed to determine the expression of TCF3, histone deacetylase 3 (HDAC3), and microRNA-101 (miR-101) in the Burkitt lymphoma (BL) tumor tissues and lymph node tissues with reactive lymph node hyperplasia (RLNH). We found that the expression of TCF3 and HDAC3 was up-regulated in BL tumor tissues and lymphoma cells, and the miR-101 expression was down-regulated. And TCF3 and HDAC3 were negatively correlated with the expression of miR-101, respectively. In addition, knockdown of TCF3 can inhibit BL cell proliferation, reduce cell viability and promote cell apoptosis, retain the cell cycle in the G0/G1 phase, and inhibit the expression of Akt/mTOR pathway-related proteins (p-Akt and p-mTOR). When miR-101 was overexpressed, the results were the same as when TCF3 was knocked down. Moreover, we used Co-immunoprecipitation (Co-IP) to detect the interaction between TCF3 and HDAC3, and performed the Chromatin immunoprecipitation (ChIP) experiment to detect the enrichment of TCF3 and HDAC3 in the promoter region of miR-101. We found that TCF3 can interact with HDAC3 and is enriched in the miR-101 promoter region. In conclusion, TCF3 combined with HDAC3 down-regulates the expression of miR-101, thereby promoting the proliferation of BL cells and inhibiting their apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.