In the welding process of thick-walled titanium alloys, the selection of the wire type is one of the critical factors affecting the welding quality. In this paper, flux-cored and cable wires were used as filler materials in the welding of thick-walled titanium alloys. The macrostructure, microstructure, texture, and grain size of both welded joints were compared by employing an optical microscope (OM), scanning electron microscope (SEM), and transmission electron microscope (TEM), and the tensile and impact properties were also evaluated. The comparison result showed that the fusion zone microstructure of both welded joints was dominated by a basketweave structure composed of interwoven acicular α′ martensite, whereas the microstructure of flux-cored wire welded joints was finer, and the degree of anisotropy was low. The strength of both welded joints was higher than that of the base metal, ensuring that fracture occurred in the base metal area during tension. The Charpy impact energy of the flux-cored wire welded joint was 16.7% higher than that of the cable wire welded joint, indicating that the welded joint obtained with the flux-cored wire performed better in the welding process of thick-walled titanium alloys.
Metal fabrications experience complex physical metallurgical processes during additive manufacturing, leading to residual stress and coarse microstructure with directional growth. It significantly affects the comprehensive performance of the fabrications, which limits the application of additive manufacturing. Ultrasonic impact treatment (UIT), as a strengthening means to assist additive manufacturing, can effectively improve the stress state and refine the microstructure and the comprehensive performance. This paper introduces the effect of UIT on AM metal fabrications on microstructure morphology, stress distribution, surface roughness, internal defects, and comprehensive performance to gain a deeper understanding of the role of UIT on additively manufactured metal fabrications, which is based on the working principle and effect of process parameters. In addition, the strengthening mechanism of UIT in additive manufacturing is described from the perspective of surface plastic deformation and substructure formation, providing support for the shape and property control of metal fabrications in the process of additive manufacturing assisted by UIT. Finally, the issues that need to be studied in depth on UIT in additive manufacturing are summarized, and an outlook on future research directions is taken.
Metal fabrications experience complex physical metallurgical processes during additive manufacturing, leading to residual stress and coarse microstructure with directional growth. It significantly affects the comprehensive performance of the fabrications, which limits the application of additive manufacturing. Ultrasonic impact treatment (UIT), as a strengthening means to assist additive manufacturing, can effectively improve the stress state and refine the microstructure and the comprehensive performance. This paper introduces the effect of UIT on AM metal fabrications on microstructure morphology, stress distribution, surface roughness, internal defects, and comprehensive performance to gain a deeper understanding of the role of UIT on additively manufactured metal fabrications, which is based on the working principle and effect of process parameters. In addition, the strengthening mechanism of UIT in additive manufacturing is described from the perspective of surface plastic deformation and substructure formation, providing support for the shape and property control of metal fabrications in the process of additive manufacturing assisted by UIT. Finally, the issues that need to be studied in depth on UIT in additive manufacturing are summarized, and an outlook on future research directions is taken.
Laser-MAG (metal active gas) hybrid welding of nickel-saving 08Cr19Mn6Ni3Cu2N stainless steel was carried out by using 98%Ar + 2%N2 and 95%Ar + 5%CO2 as shielding gases. The effect of different shielding gases on the microstructure and properties of the welded joints was investigated. The results showed that arc shrinkage was significant with the addition of nitrogen, weld spatter increased with the expansion of arc volume, and arc stability deteriorated. The ferrite content in the weld decreased by about 60%, the ferrite dendrite also gradually became finer, and the secondary dendrite arm was shorter. Only a small amount of δ and γ phases existed in the weld, and no precipitation of the σ phase and nitride was found. Observing four crystal planes, we found that size of the austenite grains decreased with the addition of nitrogen. The average tensile strength of the welded joints decreased from 712 MPa to 704 MPa, but with improved corrosion resistance, the pitting corrosion rate increased from 19.45 g·m2/h to 18.72 g·m2/h, and the hardness of weld was slightly reduced.
A self-developed Ti-Al-V-Mo system titanium alloy flux-cored wire was used to join the Ti64 titanium alloy plate via laser welding with filler wire. The microstructure and properties of the obtained welded joint were investigated. The results showed the WM (welded metal) of the welded joint consisted mainly of acicular α’ martensite, and the HAZ (heat affected zone) was comprised of a primary αp phase, Widmanstatten, and a few α’ martensite and a residual β phase. The strength and elongation of the welded joint after breaking are equivalent to that of the BM (base metal). The tensile fracture, presenting as a microvoid coalescence ductile fracture, was encompassed by massive shear lips with deep and uniform dimples. The overall microhardness of the welded joint was sequenced as WM > HAZ > BM. In the WM, large-angle grain boundaries with intragranular misorientation greater than 15° accounted for about 84%. By XRD, it was discovered the welded joint was mainly composed of the α’ martensite, with a modest amount of extremely weak multi-angle α phase diffraction peak. The test results showed the designed welding method of titanium flux-cored wire and laser wire filling is suitable for high-quality welding of titanium alloy plate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.